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Abstract—In clinical diagnostic, magnetic resonance imaging
(MRI) is a valuable and versatile tool. The acquisition process is,
however, susceptible to image distortions (artifacts) which may
lead to degradation of image quality. Automated and reference-
free localization and quantification of artifacts by employing
convolutional neural networks (CNNs) is a promising way for
early detection of artifacts. Training relies on high amount
of expert labeled data which is a time-demanding process.
Previous studies were based on global labels, i.e. a whole volume
was automatically labeled as artifact-free or artifact-affected.
However, artifact appearance is rather localized. We propose a
local labeling which is conducted via a graphical user interface
(GUI). Moreover, the GUI provides easy handling of data viewing,
preprocessing (labeling, patching, data augmentation), network
parametrization and training, data and network evaluation as
well as deep visualization of the learned network content. The
GUI is not limited to these features and will be extended in
the future. The developed GUI is made publicly available and
features a modular outline to target different applications of
machine learning and deep learning, such as artifact detection,
classification and segmentation.

I. INTRODUCTION

In modern medicine, magnetic resonance imaging (MRI) is
a versatile tool in clinical diagnostic. Its capability of assessing
processes within the human body and anatomical structures in
a non-invasive manner makes it a valuable technique. However,
due to its long acquisition time, MRI is prone to a manifold
of artifacts which can degrade image quality significantly.
Fig. 1 shows images which are distorted by patient-induced
motion in comparison to a desired motion-free image. Motion
artifacts are a common source for image degradation, since
the long acquisition time can cause patients to move instead of
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Fig. 1: Artifact-free and artifact-affected images in the head
and abdomen. Arrows indicate the motion artifacts.

lying perfectly still (rigid motion) and necessary physiological
functions such as respiration or heartbeat result in unavoi-
dable movements (non-rigid motion), which may manifest
as motion artifacts in the image. Depending on their cause,
the appearances of patient-induced motion artifacts differ.
Rigid movement (e.g. head movement) results in Nyquist
ghosting, i.e. additional manifestations of the original image
which are slightly rotated or shifted. Non-rigid movement (e.g.
respiration) appears as blurring in the affected image regions
because internal structures change their location, shape and
size.
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For a precise diagnostic, a good image quality of the acqui-
red data is crucial. To determine if the quality is sufficient,
it is often necessary to have a human expert assessing the
acquired images. Such a time-demanding and expensive ma-
nual inspection is not feasible in cases of retrospective analysis
of high data quantities, e.g. for large epidemiological cohort
studies like the German National Cohort [1] or UK Biobank
[2]. Other possible problems concern patient comfort and
clinical throughput. In some cases the quality inspection by an
MR specialist is performed after the patient has already left
and it may be necessary to schedule an additional examination.

For an automated assessment of MR image quality, a
reference-free and spatially resolved detection and quantifi-
cation of artifacts would be desired. That way, a prospective
quality assurance or a retrospective quality control can be
performed. The obtained quality information respectively arti-
fact appearance can enable mechanism like prospective [3]–[5]
or retrospective [6]–[9] correction of patient-inducted motion
artifacts. Moreover, an automated adaptation of acquisition
parameters with a directly repeated scan of insufficient quality
can improve data fidelity.

We thus proposed an approach based on convolutional
neural networks (CNN) which were trained to learn the
appearances of artifacts in whole-body MR images. The first
step consisted of successfully training 2D CNNs to detect
motion in 2D image patches [10], which was subsequently
extended to the 3D case to cope with through-plane motion [9],
[11]–[14], resulting in a substantial increase in classification
accuracy. Furthermore, we recently proposed a first approach
on training a CNN to detect multiple artifacts simultaneously
[15].

Although good results were achieved in our previous stu-
dies, the detection was limited by the provided global labeling.
In global labeling, the entire volume is labeled as artifact-free
or artifact-affected. Since artifact appearance is localized and
to ensure a high quality of the labels used for training, it is
necessary that an experienced radiologist inspects the images
for artifacts and provides local labels for the appearance of
artifacts. In this work, we will examine the benefits of a local
labeling over a global labeling for the task of MR artifact
detection.

Moreover, the emerge of machine learning and deep lear-
ning applications in the medical area rise the need for an easy
processing setup: from data viewing over network training
towards analysis of the obtained results. We therefore propose

in this work an easy-to-use graphical user interface (GUI)
which provides the following functionalities: data viewing (DI-
COM, JPEG, PNG, TIFF), preprocessing (labeling, patching,
data augmentation, data splitting), network training, hyperpa-
rameter setting, test data evaluation (accuracy plots, confusion
matrix, probability map), network visualization (feature maps,
deep visualization). Several applications can be supported by
this GUI such as classification, regression, reconstruction,
correction and/or segmentation. We chose to implement the
GUI in PyQt, so that it can be used platform independent with
any Python-based deep learning implementation (keras [16],
Tensorflow [17], PyTorch [18], Caffe [19]). In our work we
show its usage with keras. In this work we present the modular
structure of the GUI and its core functionalities. We will
highlight its usage for three applications: MR motion artifact
detection with derived local labels in comparison to a global
labeling, MR motion correction via variational autoencoder
(VAE) and semantic segmentation of organs in whole-body
MRI.

II. GUI

The GUI is built up in PyQt as a model-view control archi-
tecture and is supported for both Python 2.7 and Python>3.5.
The currently provided modules are Data Viewing, Network

Training, Network Visualization and Prediction Viewing which
can be accessed via tabs. Due to the modular structure of
the user interface, it can be extended by further modules as
required. Furthermore, the GUI can also be accessed via web
browser (hosted on a Python server) making it independent
of an installed Python environment which eases operation and
access. The structure of the GUI with its modules is shown in
Figure 2.

A. Data Viewing

The Data Viewing module includes all functions to display
images (DICOM, JPEG, PNG, TIFF, ...) in a suitable layout.
Within this module, the GUI ensures a flexible display of
images on a grid layout in both 2D mode (Fig. 3 (a)) and
3D mode (Fig. 3 (b)). In 2D mode, different images can be
loaded, next to each other. In 3D mode, the various views
(sagittal, coronal, axial) of a 3D image are displayed. The user
has several image operations such as zooming, brightness or
contrast adjustment as well as scrolling through the different
slices. They can be invoked individually on each image or
coupled on all loaded images. For labeling, several drawing
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Fig. 2: Structure of Graphical User Interface (GUI) with its modules designed for deep learning of medical data.

tools are available to the user: rectangle-tool, ellipse-tool,
lasso-tool to mark regions of interest (ROIs) and volumes of
interest (VOIs). In addition the user can assign a class label to
these marked regions/volumes. The set markers are stored in a
database immediately after creation. They can be reloaded and
modified later via the GUI. The colouring of the label can be
individually changed. For each mark, the information is stored
in a JSON file (data format for the purpose of data exchange
between applications), making it available in the database at
any time for data preprocessing.

B. Network Training

For training and network validation, the user can set para-
meters for data preprocessing, data splitting, and training using
the GUI’s Network Training tab (Fig. 3 (c)).

For data preprocessing, the gray values of an image can be
normalized either into a range of [Imin, Imax] or using zero-
mean and standard deviation. Afterwards, the image can be
patched into sizes [px×py×pz] ([left-right × anterior-posterior
× superior-inferior]) with an overlap [ox, oy, oz]. Since some
images can not be completely subdivided into patches, they
must be enlarged by zero-padding. The zero-padded image
then has the size [nx × ny × nz]. The number of patches per
image can be calculated as

Npatches =

(
nx − px
ox

+ 1

)
·
(
ny − py
oy

+ 1

)
·
(
nz − pz
oz

+ 1

)
For data augmentation, the user has the choice between mir-

roring along all dimensions, translation by a specified vector
of displacements, rotation by a vector of angles, rescaling
to a vector of desired resolutions, zero component analysis
whitening for decorrelating patches, histogram equalization

for intensity variation and contrast stretching for contrast
adaptations.

For a supervised training, the images respectively patches
are assigned with their respective labels from the database.
Training any previously defined architecture is done by han-
ding over a .py file to the GUI which has a specified interface.
This file is then executed and monitored from the GUI.
This approach makes the GUI independent of the desired
machine/deep learning implementation. In addition, the user
can select certain parameters such as batch size, optimizer,
learning rate or number of epochs. Moreover, the user can
select the data splitting into training, validation and test set:
random splitting with a split percentage or k-fold cross-
validation with leave-one-subject-out approach. During the
training process, curves of the accuracy and loss function are
displayed in the GUI and are updated after each epoch. This
enables fast performance evaluations and validity checks.

C. Network Visualisation

From the provided .py file, the structure (convolutional
layers, activation functions, connections, ...) of the CNN ar-
chitecture can be visualized in the GUI (Fig. 3 (d)). Moreover,
after training the user can also examine the learned network
content in each layer by visualizing the trained filter weights
and obtained feature maps for 2D and 3D.

If a test database or a test images is selected, a human-
interpretable visualization of the network content is retrieved
via a deep visualization [10]. A most-likely input patch for a
given output class is generated and convolved with the signi-
ficant and sparse attractor points in the test image/database.
This yields an interpretable significance scale to which areas
the network is most attracted.
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(a) Data Viewing in 2D mode (b) Data Viewing in 3D mode

(c) Network Training (d) Network Visualization

Fig. 3: The Graphical User Interface: Operating tabs of Data Viewing in (a) 2D mode and (b) 3D mode, (c) Network Training
and (d) Network Visualization. The user can easily switch between the tabs and the 2D/3D viewing modes. In Network Training,
parameters for data preprocessing and training can be set. In the Network visualization tab, the user can examine the inner
structure of the network and the obtained feature maps as well as a deep visualization.

D. Prediction Analysis

The training and prediction results of the CNN architec-
tures can be assessed using retrospective analysis methods
such as probability map overlay, confusion matrices and/or
derived predictive metrics (accuracy, loss, sensitivity/TPR,
specificity/TNR, ...). In case of a voxel-wise or patch-wise
classification/regression, the estimated masks/maps can be
displayed and overlaid to the images (Fig. 4). The user can
specify the overlay colours transparency and hatching.

For network performance, the training accuracy/loss and
the test accuracy/loss can be plotted over the epochs during
training. Predictive test metrics derived from the confusion
matrix show the test performance. In case of multiple classes,
a one-versus-all metric calculation is provided.

Fig. 4: Prediction Analysis: Estimated probability maps over-
laid on MR image with user-specified colouring and hatching.

III. USE CASES

The following use cases have been implemented for the
GUI: MR motion artifact detection, MR motion correction

841

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



via VAE and semantic segmentation of organs in whole-body
MRI. For the use cases MR motion artifact detection and
motion correction we used MRI scans of the head, abdomen
and pelvis of 18 healthy volunteers (3 female, age 27,3 ± 6,3
years) to evaluate the performance of CNN architectures in dif-
ferent settings. Table I summarizes the acquisition parameters.
For each volunteer and body region, a reference image and an
artifact image are created by either instructing the volunteer
to hold still/their breath or move their head or pelvis/breathe
freely.

For semantic segmentation we used the epidemiological
imaging KORA database [20]. From the imaging protocol of
the KORA study, we used the whole body T1-weighted dual
gradient echo sequence which was acquired with isotropic
resolution of 1.7 × 1.7 × 1.7 mm in coronal orientation in
a FOV of 490 × 490 × 272 mm3 which results in a 3D
image size of 288 × 288 × 160. Further imaging parameters
are: echo times, 1.26/2.52 ms; repetition time, 4.06 ms; flip
angle, 9◦; bandwidth, 755 Hz/px. In-phase and opposed-phase
images were obtained in each measurement from which water
and fat images were obtained via a 2-point DIXON. A total
number of 173 labeled patient sets were available.

A. MR motion artifact detection

For the MR motion artifact detection, the artifact-affected
areas are marked with the drawing tools of the GUI (local
labeling). To compare local labeling with global labeling, two
networks are used: The first one is the 2D-CNN which we
employed in a previous study [10]. Its structure consists of
four stages. The first three stages have 2D convolutional layers
with ReLU activation and the last stage consists of a fully
connected layer with softmax output. The second network is
a 3D network which was employed in another study [11],
[12] and is denoted as VNetArt. It inspired by VNet [21] and
consists of four stages. Each of the first three stages has two
convolutional layers with parametric ReLU activation and a
concatenation layer which combines the output after the two
convolution operations with the feedforward input. Each stage
is completed by a max-pooling downsampling. The fourth
stage is a fully connected dense layer with softmax output.

Each patch is thus assigned an artifact probability part.
2D patches [px × py] = [40 × 40] with ox = oy = 0.5,
and 3D patches [px × py × pz] = [40 × 40 × 10] with
ox = oy = oz = 0.5 are used. The label corresponding to
”artifact” is assigned if more than 50%/75% of a patch is

marked as artifact in the 2D/3D case, respectively. For each
body region, separate networks are trained using either only
the body-specific training data or all of it. In all scenarios, both
architectures with global and local labeling are trained for a
comparative performance analysis. The following parameters
are used for training: learning rate = 0.001, epochs = 100,
Adam optimizer and batch size = 64. A leave-one-subject-out
cross-validation with 2 runs was conducted. After the training
is completed, the patches of a volunteer who is unknown
to the networks are classified. A higher patching overlap of
ox = oy = oz = 0.9 is chosen for this evaluation to create a
probability map with detailed localization and quantification
of motion artifacts.

Quantitative results in terms of accuracy, true negative rate
(TNR) and true positive rate (TPR) for all body regions are
depicted in Figure 5. For the 2D-CNN with local labeling
(LL), an accuracy of 79.4% is calculated. This represents an
improvement of 9.4% compared to the previous approach of
global labeling (GL). Local labeling combined with VNetArt
achieves an accuracy of 90.7%, which increases former results
for global labeling by 8.1%.

Fig. 6 shows the probability maps (respective top rows) and
the decided artifact region (respective bottom rows) for the
2D-CNN and the VNetArt with both global and local labeling
in the head (rigid motion), abdomen (non-rigid motion) and
pelvis (rigid motion). The column on the far left depicts the
labeling, i.e. the marking of the region affected by artifacts
(upper image) and the resulting hard-thresholded artifact re-
gion (lower image). The probability maps are the estimated
part for each patch.
In the head (Fig. 6 (a)), for both 2D-CNN and VNetArt, local
labeling improves the artifact localization compared to global
labeling which is also reflected in a higher accuracy and TPR.

The abdominal images (Fig. 6 (b)) show only a weak
expression of artifacts in the anterior-posterior direction caused
by non-rigid motion, especially in the lung area and in the
background. This is reflected in the comparably low results
in Fig. 5. Nevertheless patch-wise labeling leads to significant
improvements. The classification accuracy is 67% for the 2D-
CNN with local and 63% with global labeling. VNetArt shows
higher accuracies for both labeling approaches. Local labeling
results in an accuracy of 85.9%, while global labeling leads
to an accuracy of 76.7%, corresponding to an improvement of
12%. The 2D-CNN with local labeling improves recognition
of non-rigid movements in the abdomen.
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TABLE I: Acquisition parameters of MR data for motion artifact detection and correction.

head T1-weighted abdomen T1-weighted pelvis T1-weighted pelvis T2-weighted

TE [ms] 8.4 10 11 86
TR [ms] 750 800 900 4200
flip angle [°] 140 150 160 150
bandwith [Hz/px] 260 190 190 200
averages 2 2 2 2
phase-encoding direction left-right anterior-posterior anterior-posterior anterior-posterior
matrix size 256×196×40 320×192-256×30 320×192-240×40 320×192-240×40
voxel size [mm3] 1×1×3 1.25×1.25×5 1.25×1.25×5 1.25×1.25×5

head abdomen pelvis T1 pelvis T2 Ø
0

0.2

0.4

0.6

0.8

1

(a) accuracy

head abdomen pelvis T1 pelvis T2 Ø

2D-CNN (LL) 2D-CNN (GL)
VNetArt (LL) VNetArt (GL)

(b) TNR

head abdomen pelvis T1 pelvis T2 Ø

(c) TPR

Fig. 5: MR motion artifact detection: Obtained accuracies, true negative rate (TNR) and true positive rate (TPR) for both
networks (2D-CNN, VNetArt) with global (GL) and local (LL)

The resulting accuracies for T1-weighted images of the
pelvis are given in Fig. 5 and show very little difference
between both labeling approaches and for either network.
The 2D-CNN with global labeling even exceeds the results
achieved with local labeling by 1.2%. The reason for that
is, that the pelvic region in general shows strong motion
artifacts in all images, with only small areas free of artifacts.
The overall best results are provided by the combination of
VNetArt and local labeling with an accuracy of 96%. Figure
6 (c) shows the probability maps. With local labeling, the
network is able to better distinguish artifact-free regions from
artifact-affected regions. Using T2-weighted images leads to
similar results (see Fig. 5).

For the MR motion artifact detection the local labeling
exceeds global labeling on average by 5%.

Comparing the 2D and 3D networks, the 3D VNetArt
outperforms on average the 2D-CNN in terms of accuracy,
87.5% compared to 76.3% for the global labeling and 91.9%
compared to 80.0% with local labeling. This corresponds to an
average increase of 15% for both labeling approaches. Overall,
local labeling increases classifier performance for 2D-CNN
and VNetArt by 4.8% and 5.1%, respectively.

B. MR motion correction via variational autoencoder

Once the networks are trained to detect motion artifacts,
they have embedded some information on how motion looks
like in the image. So instead of only detecting the artifacts,
an additional network can be appended to the structure which
performs a correction step [12]. This end-to-end trained archi-
tecture is built up as a VAE with VNetArt architecture in the
individual parts, denoted as VAE-VNetArt. The VAE-VNetArt
is separated into three parts as shown in Fig. 8: standalone
encoder, shared encoder, decoder.

The encoding parts resemble the encoding branch of the
proposed VNetArt whilst the decoding part is the direct
composite decoding branch of the VNetArt. The network
is trained on motion-free and motion-affected patches. After
training the image-translation step, the network can estimate
a motion-corrected image from a motion-affected image.

In the training, motion-free and motion-affected patches are
firstly input into separate encoder branches which consist of
the first encoding stage: 2D convolutional layers with ReLU
activation function and residual path. Afterwards the individual
motion-free and motion-affected feature maps are concatena-

843

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



1

0

part

Labeling 2D-CNN with GL 2D-CNN with LL VNetArt with GL VNetArt with LL

0 50 100 150

0

50

100

150

200

250

1

0

0.5

artifact

no artifact

(a) head

1

0

part

Labeling 2D-CNN with GL 2D-CNN with LL VNetArt with GL VNetArt with LL

0 50 100 150 200 250 300

0

50

100

150

200

250

1

0

0.5
artifact

no artifact

(b) abdomen

1

0

part

Labeling 2D-CNN with GL 2D-CNN with LL VNetArt with GL VNetArt with LL

0 50 100 150 200 250 300

0

50

100

150

200

1

0

0.5
artifact

no artifact

(c) pelvis

Fig. 6: MR motion artifact detection: Probability mask overlay with decided artifact region for 2D-CNN and VNetArt with
local labeling (LL) and global labeling (GL) in (a) head (rigid motion), (b) abdominal (non-rigid motion) and (c) pelvic (rigid
motion) images.
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Fig. 7: MR motion correction: VAE-VNetArt generated
motion-corrected images in head (rigid motion) and abdomen
(non-rigid motion) which uses the respective motion-affected
images as input. The structural similarity index (SSIM) and
normalized mutual information (NMI) are calculated in com-
parison to the motion-free (reference) images.

Fig. 8: MR motion correction: Proposed VAE-VNetArt consis-
ting of two standalone encoders for motion-free and motion-
affected patches, shared encoder, dense net in latent space and
decoder to retrieve motion-corrected patches.

ted along the channel direction and processed simultaneously
in the shared encoder block. This block consists of the two
remaining VNetArt encoding stages. In the latent space two
dense layers perform a separate mapping to mean and variance
from which a subsequent selection layer depicts the values.
This built up feature map is processed in the decoding block
outputting a motion-corrected patch. Skip connections between
layers and blocks improve stability and share information
amongst different resolution levels. An Adam optimizer was
used with β1 = 0.9, β2 = 0.999 and ε = 1e − 08. The loss
function is composed of a perceptual loss [22], a Charbonnier
loss [23] and a gradient entropy loss [24]. The perceptual loss

uses a separate VGG-19 network [25] which was pretrained
on the ImageNet database.

The presented results in Fig. 7 show a very good visual as
well as quantitative performance in terms of structural simi-
larity index (SSIM) [26] and normalized mutual information
(NMI) for the correction of rigid motion artifacts in the head.
The correction of non-rigid motion in the abdominal case is
still acceptable, but suffers from through-plane motion which
cannot be perfectly corrected by the current 2D network.
Future studies focus on the 3D extension which demand
however careful parametrization to guarantee convergence.

C. Semantic segmentation of organs in whole-body MRI

Another use case for the GUI are segmentation tasks. We
looked at semantic segmentation of specific organs in whole-
body MRI. The goal is to implement and validate a CNN-based
3D semantic segmentation of the liver, spleen and background
on multi-contrast MR data. From the KORA study we used the
whole-body T1-weighted dual gradient echo sequence of 173
patients. Data includes the image images of patients with and
without diabetes. To obtain the ground truth data for training
and validation, the liver and spleen of all available data sets
were manually segmented using the proposed GUI labeling
tool. The resulting masks were stored for further processing.

The proposed CNN-based network [27], denoted as DCNet,
includes several schemes for optimizing semantic segmen-
tation: UNet for pixel-wise localization [28], VNet for vo-
lumetric medical image segmentation [21], ResNet to cope
with vanishing gradients and degradation problem [29] and
DenseNet, to enable deep supervision [30]. The structure of
the DCNet consists of an encoding and decoding branch. Each
stage consists of NB dense blocks with L DenseConv layers
and NT TransitionLayerPool/Up blocks with concatenations
in between. This resulted in 152 layers in total. For training,
the number of epochs has been set to 50 and the batch size
to 48. Images were patched into sizes of 32 × 32 × 32 and
50% overlap. A 4-fold patient-leave-out cross-validation was
performed.

Figure 9 shows the comparison of the ground truth (labe-
ling) with the 3D semantic segmentation. Organ boundaries
and background region were precisely differentiated. Test
accuracy reached a maximum of 99.7% and 99.9% in the liver
and spleen, respectively.
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Fig. 9: Semantic segmentation: 3D segmentation of liver (red) and spleen (green) in four diabetic patients via proposed DCNet
in comparison to labeled ground truth (labeling).

IV. CONCLUSIONS

In this work, a GUI was implemented, which is composed
of the modules Data Viewing, Network Training, Network

Visualization and Prediction Analysis. The GUI is a powerful
and easy-to-use tool suitable for processing and visualizing
data. Processing of MRI data with the GUI was examined
in the uses cases: MR motion artifact detection, MR motion
correction via VAE and semantic segmentation of organs in
whole-body MRI.

All use cases were performed in conjunction with the GUI
and users reported an easier data and result handling as well
as operation of the training itself. The proposed GUI can
assist researchers and radiologists in the field of machine/deep
learning to enable an easy-to-handle and maintain processing.
A flexible data display with possible network output overlay
allows smooth network performance evaluation. Moreover, the
performance can be examined via confusion matrices, derived
metrics and by displaying its trained visual content. Our GUI
provides several core functionalities and is due to its modular
structure expandable by new modules with further functions to
target different applications such as classification, regression,
reconstruction, correction and/or segmentation tasks. The GUI
as well as the CNNs are publicly available under Apache 2
license: https://github.com/thomaskuestner/CNNArt
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