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Abstract—Real-time electricity pricing (RTP) for consumers
has long been argued to be key to realize the many envisioned
benefits of a smart energy grid. However, there has not been a
consensus on how to best implement RTP in an organized, com-
petitive wholesale market with active demand participation. Since
most of such markets implement a two-settlement system, with
day-ahead electricity price forecasts guiding physical transactions
in the next day and real-time ex post prices settling any real-
time imbalances, it is a natural idea to let consumers respond to
the day-ahead prices. We show in this paper through simulation
that naive responsive behaviors to the day-ahead price signals
can lead to high price volatility, which will increase not only the
risk of system instability, but also the financial risks faced by the
consumers. To overcome this issue, we propose a game-theoretic
framework in which each consumer solves a multi-armed bandit
problem; that is, each consumer learns from the history of the
game and attempts to minimize the cumulative regrets. We show
through simulation that such a framework leads to drastically
reduced volatility on real-time prices and much flatter load curves
for the entire grid.

I. INTRODUCTION

In traditional power systems, electricity demand is usually
considered to be inflexible, as consumers have been used to
the idea of consuming electricity whenever they need to. Since
the reliable operation of a power system requires the supply
and demand to be balanced at all time, demand inflexibility
adds great pressures on the system to maintain enough redun-
dancies in both generation and transmission capacities. Such
redundancies are very costly, as they are capital intensive to
build. In addition, the lack of flexibility on the demand side
makes the power system less reliable and vulnerable to attacks,
as the outage of a few large power plants and/or transmission
lines may bring down a large part of the highly interconnected
power grid (such as the U.S. Northeast blackout of 2003 [6]).

The visionary late MIT professor Fred Schweppe envisioned
an energy future with real-time electricity pricing and actively
engaged demand response back in 1978 [11], as he recognized
the many benefits associated with flexible demand. With the
advent of various smart grid technologies, such as smart meters
and an array of information and communications technologies
(ICTs), flexible demand is more than ever to be closer to
reality. The direct benefits of flexible demand are huge, in-
cluding saving a tremendous amount of money for consumers

and making power systems more robust. There are also more
subtle benefits, such as the potential environmental benefits of
using flexible demand to better match outputs from renewable
resources, such as wind and solar, and hence reducing air
pollutant emissions from fossil fuel-fired power plants.

It is our belief that technologies alone, however, are not
enough to seamlessly integrate flexible demand into a whole-
sale power market. There have to be changes to the current
market operations, which can be on the side of system oper-
ators, utilities or individual consumers. Generally speaking,
there are two fundamentally different approaches to bring
demand flexibility: one is the centralized approach; the other
is the decentralized approach. The former approach, as the
name suggests, is to have the system operators or utilities
directly manage their load. Various forms of such an approach
already exist in the current system operations. For example,
load shedding contracts have been around for many years.
Such contracts provide the system operators the flexibility to
cut off certain load during emergency situations. In return, the
other side of the contracts, usually large industrial customers,
will receive lower electricity rates in return. More recent
example of centralized load control is to use smart household
thermostats to reduce peak load [13].

While central load control may be effective, the amount of
resources that system operators and utilities can control is lim-
ited, partially due to software and computing power limitation.
In addition, many demand-side resources, such as microgrids
and distributed generation resources (such as rooftop solar
panels), are not under the control of system operators (unless
certain contracts are in place). The centralized approach may
also raise issues on privacy, as some consumers do not feel
comfortable of having someone else manage their household’s
electricity usage.

The decentralized approach, on the other hand, depends
on end-consumers to make their own electricity consumption
decisions. Through certain incentives and information sharing,
it is hoped that the collective consumers’ actions may bring the
desired demand flexibility from the system’s perspective. This
is commonly referred to as demand response (DR). Within the
general term of DR, there are many different forms. Using the
classification in [12], there are incentive-based DR and price-
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based DR. For the former, it can be similar to the load shed-
ding contract; namely, a consumer receives some incentives
(such as lower rates) to promise to respond to utilities’ call
of reducing electricity consumption as needed. Other forms of
incentive-based DR often involve a baseline; that is, consumers
will receive some incentives if they can bring their energy
consumption below a pre-defined baseline consumption level.
Price-based DR, on the other hand, is usually completely
voluntary (i.e., no contracts), and consumers alone make the
decision on when to use electricity based on some electricity
price information they receive from the system operators or
utilities. The price information has to reflect to some degree
of power system’s conditions (such as high demand and low
supply at a certain period). What exactly shall be contained in
such price information vary greatly, ranging from the time-of-
use pricing mechanism to real-time pricing (RTP). In the later,
real-time wholesale electricity prices (such as hourly or half-
hourly prices) are shared with the end consumers for them
to decide their energy consumption. In this work, we focus
on priced-based DR coupled with RTP; namely, consumers
respond to real-time electricity prices. Such an approach may
have the least resistance of being implemented as it is a
completely decentralized approach that does not require any
operation or rule changes on the system operator side.

There have been a large amount of works on how an indi-
vidual consumer should make decisions under RTP. However,
much fewer works exist to study the system-level impacts
when a large amount of consumers respond to RTP. Roozbe-
hai et al. [10] raise the concern that if not done properly,
price-based DR plus RTP may increase price volatility and
reduce system reliability. This is so since real-time electricity
prices are only available after the actual supply and demand
are realized. It is meaningless for consumers to respond to
these ex-post prices. Hence, consumers can only respond to
some price forecasts, which creates a closed-loop system with
feedback, as the price forecasts will influence consumers’
decisions, which in turn will impact the real-time electricity
prices and likely will cause the real-time prices to diverge
from the price forecasts. Any price-based DR implementation
without considering such a closed-loop system is doomed
to fail. While such a closed-loop system can be managed
in a centralized approach (see [14], for example), there was
a void in literature on how to realize a fully decentralized
price-based DR without causing extreme price volatility or
jeopardizing system reliability. To address such a void, the
first two authors proposed a multi-armed bandit (MAB) game
framework [15], in which each consumer solves a multi-armed
bandit problem. The essence of this approach is that each
consumer can learn from their past decisions based on the past
electricity prices and their electric bills, and gradually arrive
at a strategy that can minimize the consumers’ regrets (of not
making a better decision that would have lowered their electric
bills). While preliminary simulation results have been shown
in [15] (using test cases without transmission networks), in
this work we focus on presenting new results based on a
power system representing the New England region in the US,

with capacity-constrained transmission lines. In addition to the
similar effects of the MAB game approach as shown in [15],
including volatility reducing and load-curve flattening, we
show that transmission congestion costs can also be reduced
in this completely decentralized approach (i.e., without the
system operator to dispatch demand resources), even with
exogenous uncertainty on wind plants’ outputs. Consequently,
social welfare is increased under the MAB game approach than
in a naive response approach. In addition, we implemented
another decentralized approach to implement DR based on the
approach in [9], and show that the MAB game approach still
compares favorably in all the considered measures, including
price volatility, congestion costs, and social welfare.

To make this paper stand-alone, we will present the basic
setup for the MAB game in Section II. We will also briefly
describe the two other decentralized approaches to implement
DR in the same section; namely, the naive-response approach
and the approach introduced in [9]. Section III describes in
detail the New England power system model and input data,
and then presents the simulation results. Section IV discusses
the limitations of the MAB game approach, and identifies
several future research directions.

II. MODELS

A. General Market Setting

In a wholesale power market, electric power generators
submit their bids to supply certain quantities of electricity at
certain prices to an Independent System Operator (ISO), whose
task is to dispatch electricity to match the demand1 with the
supply bids, while ensuring all physical constraints are met.
The (wholesale) electricity price is the result of this supply
and demand balancing, as illustrated in Fig. 1. The dispatch is
done in a two-settlement fashion and is usually on an hourly
basis. More specifically, at each day, the ISO solicits supply
bids from power generators to meet the demand forecasts
of each hour in the next day. This is the day-ahead (DA)
market with the market clearing electricity prices referred
to as the day-ahead price. In real time, the ISO matches
any supply and demand deviations with additional generation
resources. Such additional balancing produces the so-called
real-time (RT) electricity prices. An ISO finds the optimal (i.e.,
cost minimizing) dispatch schedules through solving large-
scale linear programming (or convex quadratic) problems,
commonly referred to as the economic dispatch problem.

Here we assume that electricity consumers are charged the
real-time electricity prices.2 But since the real-time prices are
determined after the fact, i.e, after the supply and demand have
been realized (hence, the so-called ex-post prices), consumers
cannot respond to the ex-post prices to determine how they

1As we focus on consumers’ responses to real-time electricity prices, we
do not consider active demand bidding into wholesale markets.

2On top of the wholesale rates, electric utility companies also impose
additional charges to end users to cover the utilities’ transmission and
distribution (T&D) costs. But such charges are fixed; i.e., they do not vary
over time. Hence, we do not consider any of the fixed charges to consumers
in our models as such charges do not affect any of our research findings.
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Figure 1: Wholesale electricity price as the market clearing
price from supply bids and demand balancing.

would consume electricity in some future time. Hence, in the
naive-response model (to be introduced in Section II-C), we
assume that consumers can receive the day-ahead prices and
then decide what to do the next day. In the MAB-game model,
on the other hand, the consumers do not need to respond to any
price forecasts, as their decisions are made through learning
their past decisions and payoffs. Hence, the day-ahead prices
(or any price forecasts) are irrelevant in the MAB-game model.

Some more details regarding the market setting are as
follows.

Temporal resolution. Our simulations in both models con-
tain repetitive daily market operations, with each day denoted
by d ∈ {0, 1, ...}. Within each day, there are time periods
denoted by t, and t = {1, 2, . . . , T}. With each t there is a
corresponding DA and RT price. Usually the t’s are measured
in hours or in even finer resolution in real markets.

Electricity demand. We consider a total of n end consumers,
where the consumers are indexed by kc ∈ {1, ..., n}. We
assume that each of the consumers has both inflexible and
flexible load. The consumption level and timing of the inflex-
ible load is fixed. For the flexible load, its consumption level
is also assumed to be fixed (across different days), which is
denoted by θkc . Hence the only decision each consumer needs
to make is when to consume the flexible load to minimize their
electric bills. Such a decision is denoted by xkc

d ∈ {1, ..., T}.
An underlying assumption here is that a consumer only makes
one decision in one day (hence, there is only a d index to the
variable x, not a t index).

For the inflexible demand, there is no need to consider on
the individual consumer level, and we let BDt denote the
aggregate inflexible load at time t = {1, . . . , T} in a day, and
it does not change over days.

With the above notations, the system-wide real-time de-
mand, denoted by LRT

d (t), is as follows for t = 1, . . . , T
and d = 1, 2, . . .:

LRT
d (t) = BDt +

n∑
kc=1

θkc1{xkc
d =t}, (1)

where 1{A} is the typical indicator function that takes the
value of 1 if the generic event A is true, and 0 otherwise.

B. The MAB-game Model

Under real-time pricing, since each consumer’s electric bill
depends on how the other consumers respond to price signals,
this is a classic situation of a non-cooperative game in the
game theory literature. However, this is not a simple static
game, as the decision of choosing which period to consume
the flexible load needs to be made on a daily basis. Hence,
this is an instance of dynamic games. In addition, this is also
a game of incomplete information; that is, consumers do not
know the explicit payoff functions of the other consumers;
nor do they know how many players are in the game. In game
theory literature, the standard equilibrium concept for dynamic
games of incomplete information is Perfect Bayesian Nash
equilibrium (PBNE) [2]. A PBNE consists the collection of
each player’s strategy profile, which is a function that maps
the entire history of the game to each player’s feasible set of
actions, under the assumption that each player updates their
beliefs of other players’ payoff functions based on the Bayes’
rule. As pointed out in [3], the requirements for PBNE are
too strong to be practical: first, each player needs to choose
a strategy profile that yields the best expected payoff (given
other players choosing their corresponding PBNE strategy)
over all possible histories of the game; second, all players
need to update their beliefs’ of other players’ (unknown)
payoff functions by the Bayes’ rule through their observations
in each time period. Not only such strategy profiles are not
computable (as it would require to find the best mapping over
the functional space of all possible mappings, leading to an
infinite-dimension optimization problem), nor are electricity
consumers in reality this sophisticated.

To avoid the technical difficulties associated with PBNE,
we will have to relax the strong assumptions associated with
the equilibrium concept. More specifically, we may want to
relax the Bayes’ updating assumption, and assume that the
consumers do not necessarily require to find the best possible
strategy, but a “good enough” strategy is sufficient. One way
to quantify a “good enough” strategy is to use the concept of
regrets; that is, to measure the cumulative differences between
what would be the best response in a period and what the
consumer chose based on a certain strategy (also referred to
as a policy). Then the consumer may adopt a regret minimizing
strategy for the sequential decision-making problem. With
the market setting described in Subsection II-A, the regret-
minimizing approach resembles the well-studied multi-armed
bandit (MAB) problem. More specifically, on each day, each
consumer decides which time period t ∈ {1, . . . , T} to
consume their flexible load. This is like choosing an arm to
play in a T -armed slot machine. Once the decision is made,
the electric bill for that day is known in the end. However,
before the end of the day, the consumers would not know
the electric bill associated with choosing each time period t.
Then, each consumer faces the trade-off between exploration
– trying more arms that are not yet chosen, and exploitation
– keep choosing the arm that gives the best reward (i.e., the
lowest electric bill) so far. MAB problems have been well-
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studied in the literature (see, for example, [5] and Chapter
6 in [8] for an overview). A key assumption in most of the
MAB problems, however, is that the reward distribution of
each arm, though unknown, is stationary. In the case of price-
based DR, however, each consumer’s reward (i.e., the electric
bill) at each time period within a day may not be stationary, as
the reward depends on the collective actions of all consumers.
This lack of stationarity may be the major reason that there
has been little work on MAB games, in which each player
in the game solves an MAB problem. As mentioned in the
introduction section, a recent breakthrough on MAB games in
[3] has provided the theoretical foundations in studying the
price-based DR as an MAB game. The specific settings and
the algorithms of regret-minimization are provided below.

Decision epochs and arms. Each consumer kc ∈ {1, . . . , n}
makes a single decision at each day d = {1, 2, . . .}, which
is to determine within which time periods t = {1, . . . , T} to
consume the flexible load. Each t is considered as an arm.
Note that the assumption of a single decision per decision
epoch is not necessarily very restrictive, as a decision epoch
is somewhat arbitrary. For example, if consumers need to make
more decisions in a day, we can just reduce the decision epoch
to, for example, every 4 hours. We will report the effects
on the simulation results with different temporal resolution
of decision epochs in our future work.

Consumers’ types. The types here represent the character-
istics of electricity consumption of each consumer, such as
the type of load, the consumption level, etc. For simplicity,
we only consider the the consumption level of each con-
sumer’s flexible load, which are randomly generated according
the description in Subsection II-A, and denoted as θkc , for
kc ∈ {1, . . . , n}.

States. The state of consumer kc in day d, denoted by zkc

d , is
a simplification of the history of the MAB game. The same as
in [3], zkc

d contains 2T elements, with T being defined before
as the number of time periods in a day. The first T elements
record the number of times that each arm t ∈ {1, . . . , T} has
been chosen by consumer kc; while the second T elements
denote the average rewards (from d = 0 to the current day
d) associated with each arm t. In addition, we let Zkc

d be the
set of all possible states for consumer kc at day d; hence,
Zkc

d ⊂ Z2T
+ , with Z+ being the set of nonnegative integers.

Policies (or strategies).3 Let Ξ = {ξ = (ξ1, . . . , ξT ) :∑T
t=1 ξt = 1} ∈ [0, 1]T be the set of probabilities. Then in the

T -armed bandit problem faced by each consumer kc, a policy,
denoted by σkc

: Zkc

d → Ξ, is a function that maps from the
current state variable space to the probability set Ξ.

For consumers employing a policy as defined above, the
actual arm that a consumer kc will choose in day d is then
a random variable, denoted by xkc

d (zkc

d ), as the value of the
random variable depends on the current state of consumer kc.
The range of xkc

d (zkc

d ) is the number of arms to choose from;
that is, xkc

d (zkc

d ) ∈ {1, . . . , T}. Since the policy σkc(zkc

d ) is

3Herein we use the words policy and strategy interchangeably, as ‘strategy’
is more commonly used in the game-theory literature, while ‘policy’ is more
widely used in dynamic programming and machine learning community.

a vector valued function, we use σkc
(zkc

d , t) to denote the
probability of consumer kc choosing the arm t. Then the
probability distribution of xkc

d (zkc

d ) for day d is

Prob(xkc

d (zkc

d ) = t) = σkc(zkc

d , t), ∀t, kc, and zkc

d ∈ Z
c
d.
(2)

Population profile. Since each consumer’s payoff (or electric
bills) also depends on what other consumers do, we define
the concept of population profile as the histogram of the arm
choices of all consumers, denoted by fd(t). More specifically,
for d = 0, 1, . . .,

fd(t) =
1

n

n∑
kc=1

1{xkc
d (zkc

d )=t}, ∀t ∈ {1, . . . , T}. (3)

We use f to denote the dynamics of {f0, f1, f2, . . . , }. Since
xkc

d ’s are random variables; so are fd(t)’s. Whether fd(t)
follows a stationary distribution (after a certain number of
days) is a key point in the MAB game, and will be discussed
further when we discuss convergence of the MAB game to a
steady state.

Rewards. We define the reward (or utility) for consumer kc
to choose arm t in day d, denoted as Ukc

d , to be the negative
of the corresponding electric bill in day d, which equals
the negative of energy consumption level θkc , multiplying
real-time price at time t, PRT

dt (f(t)). The real time price is
determined through the economic dispatch process performed
by the ISO, as illustrated in Fig. 1, when the actual aggregated
demand at t (i.e., fd(t)) is realized. More specifically,

Ukc

d (θkc , t, f(t)) := −θkcPRT
dt (f(t)). (4)

Regeneration. A novel and key idea in an MAB game is
regeneration, as proposed in [3]. More specifically, we assume
that at each day d, each consumer has a probability β to be
regrenerated, meaning that its state variable zd will be re-
initialized to all 0’s, and its type, i.e., the energy consumption
level, is re-drawn from a given distribution. This means that
each consumer has a random life time following a geometric
distribution. As pointed out in [3], this regeneration process ac-
counts for the situation where there are always new customers
joining the price-based DR program; while some customers
in the program may opt out. A more important role for the
regeneration is to ensure that even when the system reaches
a steady-state, the consumers continue to learn. (Otherwise,
they would just choose a fixed arm t without exploring other
arms.)

Regrets and regret-minimizing policies. For a consumer kc,
let z̄kc

d : d ∈ {0, 1, . . . , D− 1}, denote the states visited by kc
under a fixed policy σkc up to day D−1. If we assume that the
population profile f is stationary (again, this will be discussed
more later), then the expected reward corresponding to pulling
arm t for consumer kc will remain the same across d’s. As
a result, we can ignore the index d in the reward expression
in (4) and define the largest expected value of Ukc over all
t ∈ {1, . . . , T}, which is denoted as µkc

∗
. Then the regret of
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kc after D rounds of decision-making is defined as follows:

Rkc

D := Dµkc
∗
− 1

D

[
E

D−1∑
d=0

Ukc

d [θkc , σkc(z̄kc

d , t), f(σkc(z̄kc

d , t))]

]
.

(5)
Regret-minimizing policies for a (single-agent) MAB prob-

lem have been well-studied. One popular policy can be ob-
tained through the so-called UCB (Upper Confidence Bound)
algorithm [1]. The algorithm is simple: at each decision epoch
d, a consumer chooses the arm t̂, with

t̂ ∈ argmaxt∈{1,...,T}

Ukc
(t) +

√
2 ln(d)

dt

 , (6)

where U
kc

(t) represents the average reward for consumer kc
when the arm t is chosen up to decision epoch d, and dt is
the total number that arm t has been chosen. The objective
function in (6) reflects the trade-off between exploitation
(choosing a large U

kc
(t)) and exploration (i.e., when dt is

small, the second term in (6) is large, forcing arm t to be
chosen more often). It has been shown in [3] that under the
geometric regeneration, as described above, the UCB policy
is ε optimal; that is, the regret Rkc

D is upper bounded by ε:

Rkc

D < ε, with ε =
∞∑

D=1

(1− β)βD−1α ln(D)

D
, (7)

where α is some constant.
The UCB algorithm is easily programmable in a control

automation device, such as in a smart home control hub,
with minimum data storage or computing requirement. Policies
obtained from other regret-minimizing-based algorithms can
also be applied here. As pointed out in [3], the convergence
to a steady state of an MAB game does not depend on the
specific policy chosen.

Convergence to steady states. Let φ ∈ Φ denote a joint
distribution over all consumers’ state spaces and type spaces,
where Φ is the space of all Borel probability measures on the
joint state and type spaces of all consumers. In [3], a pair (φ, f)
is defined as a mean field steady state (MFSS) of an MAB
game if it satisfies two conditions: first, given a stationary
population profile f , which will influence the state transition,
can yield a steady state distribution φ; second, based on the
steady state distribution φ of consumers’ states and types, the
stationary population profile f can indeed emerge from the
MAB game.

Strong theoretical results regarding MFSSs have been shown
in [3], including existence of an MFSS under any policy σ,
uniqueness, and asymptomatic convergence to a MFSS when
the number of players in the MAB game approaches to infinity.
The last property is especially useful in the context of demand
response in energy markets, as the number of price-responsive
consumers can be very large. Even if numerical simulations
could not handle the large number of agents, the volatility-
soothing effect in an MAB game (as to be shown in the
numerical results in the next section) remains the same for a

large number of consumers, which is reassuring from the ISO’s
perspective should real-time pricing to be implemented in the
real world. Another nice feature of the MAB-game approach
is that consumers do not need the DA price, as they only learn
from the past real-time prices (and the corresponding rewards).
Also this is a completely decentralized approach in the sense
that the ISO does not have to do anything additionally or
differently than how they operate the DA and the RT markets
now.

Note that a MFSS is in general not a PBNE to the corre-
sponding dynamic game, as there may exist certain histories of
the game under which a consumer kc may have the incentive to
deviate from its MFSS policy σkc

in order to maximize its dis-
counted expected payoffs (this is so since regret-minimization
may not be the same as discounted expected payoff opti-
mization). However, the strong theoretical results associated
with MFSS assure its applicability in real world. This is
so because if all consumers have certain control automation
devices coded with a regret-minimization algorithm, then a
MFSS will emerge. In addition, if each consumers’ regrets can
be upper bounded or even approach to 0 as d→∞, depending
on the algorithms used, the results should be acceptable to
most of the consumers, who otherwise may not be able to
glean the benefits of real-time pricing anyway.

The theoretical proofs in [3], however, are not directly
applicable to the specific MAB game described here, as the
reward associated with pulling each arm here is more complex
than that in [3], where the reward is simply a Bernoulli
random variable. We will extend the proofs to our MAB
game in our immediate future research. Even without the
theoretical results, numerical results from the MAB-game-
based simulation are very encouraging, which are presented
below.

C. The Naive-Response Model

In the naive-response model, consumers with flexible load
will respond to the day-ahead prices to determine when
to consume electricity in the next day. From the ISO’s
perspective, the key is how to forecast the demand in the
next day. A more sophisticated approach is to recognize the
closed-loop relationship between price forecasts and the actual
demand; that is, the ISO will anticipate how the consumers
would respond to a set of day-ahead price forecasts. Such
an approach will require the ISO to employ methods from
dynamic programming and optimal control, as studied in [14].
As our focus here is to study what the market outcomes would
be when consumers’ respond to real-time pricing under the
current market operations, we do not consider the closed-loop
approach of the ISO. Instead, we assume that the ISO forecasts
the next day demand based on the past N days of realized
demand. More specifically, the ISO demand forecast for day
d+ 1, denoted as LDA

d+1, is as follows:

LDA
d+1(t) =

1

N

N∑
p=0

n∑
kc=1

θkc1{xkc
d−p=t} +BDt,

t = 1, . . . , T, d ≥ N .

(8)
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For the initial N days, the ISO just uses the average of all the
past demand data; and for d = 0, the ISO is assumed to use the
expected value of θkc . (Note that while being a fixed number,
θkc is randomly drawn from a distribution in our simulation.)

With the day-ahead demand forecasts in (8), the day-
ahead market clearing process produces the day-ahead prices,
denoted as PDA

d+1(t), t = 1, . . . , T . Based on the day-ahead
prices, in the naive-response model, consumers choose the
lowest PDA

d+1(t) to commit their flexible load θkc in day d+ 1;
that is, xkc

d+1 = ť, where ť ∈ mint=1,...,T {PDA
d+1(t)}.

Similarly, in the case of prosumers with DG resources,
each prosumer will choose the highest price period in the
next day to generate θkp ; that is, xkp

d+1 = t̂, where t̂ ∈
maxt=1,...,T P

DA
d+1(t).

Since all consumers receive the same day-ahead prices,
and the decision rules are the same across the consumers,
it is obvious that the real-time prices will exhibit both large
deviations from the day-ahead prices and high volatility, when
the percentage of flexible load is sufficiently high. Such points
have been confirmed by our simulation results, which are
presented and discussed in Section III.

D. Adaptive Mechanism

While the naive-response model may be too primitive in
realizing demand response, we consider another decentralized
approach proposed in [9], referred to as an adaptive mech-
anism. More specifically, a consumer c gradually adapts its
decision towards the optimal selection xc,∗ (which is computed
as the selection of the period t in a day d with the lowest
average DA price) as follows: xcd+1 = xcd + γ(xc,∗ − xcd),
where γ is the adaptive rate. We can see that when γ = 1, the
adaptive-response is exactly the naive-response model.

III. TEST CASE AND NUMERICAL RESULTS

In this section, we present the test case and the simulation
results corresponding to the three decentralized approaches
to implement demand response as described in the previous
section.

A. Input Data

System network. A simplified power system corresponding
to the ISO New England (ISONE) wholesale power market
has been developed in [4], and is used here for our testing
purpose. Such a system consists of 8 zones, as illustrated in
2, in which green spots represent bus nodes and red spots
represent generators. There are a total of 76 fossil fuel-fired
generators, representing different generation technologies. The
detailed data of the generators, including their generation costs
and capacities, can be found in [4]. In addition, there are 12
transmission lines in the system. For our testing purpose (in
stead of matching real-world data), we set all transmission
lines’ capacity to be 1000MW .

At each zone, we assume that there are two types of loads:
fixed and flexible. The fixed load does respond to price signals,
and their values are summarized in the 24-hour base load

Figure 2: Transmission network for the 8-Zone ISO New
England Test System [4].

profiles in Fig. 3. For flexible loads, we consider 200 het-
erogeneous consumers at each zone. For each consumer c, its
type (aka its flexible load) is sampled from a Beta distribution
of factor (2, 2), multiplied by a scaling factor.4 Different
consumers have different scaling factors, representing different
levels of energy consumption (such as different household
sizes for residential consumers). In addition, we assume that
the types are identically and independently distributed. For
all three models, we employ the regeneration scheme as
introduced in Subsection II-B. The regeneration rate is set
at 0.1, which means that each consumer’s flexible demand
amount is re-sampled from the Beta distribution every 10 days
on average.

Decision epochs and temporal resolution. We simulate 200
decision epochs (i.e., 200 days) in our numerical studies. The
number of decision epochs is just an arbitrary number set to
be large enough for the MAB-game model to converge to a
steady state. For the temporal resolution t ∈ T within each
day d, while it is usually measured in hours or half-hours;
here, as a starting point, we consider T = 6 for a day, and
each period t consists of four consecutive hours. The main
reason for this coarser resolution is to reflect the fact that
certain loads, such as electric vehicle (EV) charging, require
multiple hours to complete a task. At this point, we do not
want to consider time-linking constraints in our models, and
the 6-period partition of a day should be sufficient for common
household loads to complete one cycle of their tasks.

Wind generation. In addition to the 76 thermal power plants,
we also consider (aggregated) wind power plants in each zone.

4Note that there is no particular reason for the specific distribution chosen
here. The key is that consumers’ types can be random in this framework.
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Figure 3: 24-hour Base loads for 8 zones in ISO New England Test System.

At each zone, the wind generation capacity is assumed to be of
30% of the average hourly load. The capacity factor (the ratio
between actual generation outputs and total capacity within
a time period) of wind plants in each zone of each hour is
sampled from a Beta distribution of factor(2, BDh

Capacity ), where
BDh is the base load for hour h and Capacity is the wind
generation capacity. This setup is to reflect the fact that wind
output may be the highest during off-peak hours, but the lowest
during on-peak hours. While such wind simulation is overly
simplistic, more sophisticated simulation approach to reflect
both autocorrelation (such as in [7]) and spatial correlation
can be easily added within the MAB game framework.

B. Simulation results

For the MAB-game model, in addition to the UCB algorithm
described above, we also consider another policy: the ε-greedy
algorithm. More specifically, at each day d, a consumer c
chooses the arm t with the highest average reward so far with
probability 1 − ε, and randomly chooses another arm with
probability ε. In our simulations, each consumer has the same
probability of using either the UCB algorithm or the ε-greedy
algorithm. The reason for this mix-up is to demonstrate the
robustness (and practicability) of the MAB game approach;
namely, the agents in an MAB game do not have to all use
the same policy.

For the adaptive-response model, we select two adaptive
rates: 0.3 and 0.7, for comparison purpose.

For each model, we perform four simulations with different
seeds of the random variables. We use four different colors
to plot the resulting price paths from each simulation of each
model.

First we present the realized real-time electricity prices of
the load pocket area Boston, which is the spot in Fig. 2 with
no generators connected (NEMASSBOST in the test system).
Other bus nodes have very similar results. Fig. 4 shows hourly
average real-time electricity prices of the Boston zone.

It can be seen from Fig. 4 that the MAB-game framework
quickly converges to a steady state in all four simulations. Not
only the volatility is significantly smaller than other models,

Figure 4: Hourly average real-time electricity prices of Boston.

this approach also has the peak-shaving/valley-filling effect;
that is, the realized prices of all periods are very similar. This is
a much desired result, as a flatter price (and load) curve means
that the system is more predicable, and hence, would be more
reliable. To quantitatively compare real-time price volatility
across different models, we adopt the measure presented in
[10], which is referred to as the log-scaled incremental mean
volatility (IMV). More specifically,

IMV := lim
N→∞

1

N

N∑
t=1

|log(PRT
t+1)− log(PRT

t )|. (9)

The IMV results of different models are presented in Fig.
5, which clearly demonstrate the advantage of the MAB game
approach.

To study the effects of the three different approaches at
system level, Fig. 6 presents daily average system costs of
economic dispatch and transmission congestion. Arguably the
most interesting results are the congest-cost reduction from the
MAB game approach. The results are remarkable in the sense
that the congestion cost reduction is achieved purely through
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Figure 5: IMV of period’s hourly average real-time electricity
prices of Boston.

consumers’ learning of the past prices (and the corresponding
electric bills,) without consumers knowing anything about the
system topology or the power generators.

Figure 6: Daily average system costs. (a) economics dispatch
costs; (b) congestion costs.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we studied three decentralized approaches to
implement real-time pricing and demand response in an energy
market: the naive-response model, the adaptive mechanism and
the MAB-game model. The resulting real-time prices from the
naive-response model exhibit large variations on a daily basis,
confirming the concerns raised in [10]. This large variation
is fundamentally due to operating a closed-loop system in an
open-loop fashion. Based on simulation results, we see that
such an issue can be overcome by introducing learning-based
algorithms to consumers, which will bring randomization into
their decision making, and hence, avoiding the problem of
having all consumers move to the same direction at the same
time. While the adaptive mechanism is designed along this

line, we see through simulations that the MAB game approach
can achieve much greater benefits from a system perspective.

The MAB-game introduced in this paper, however, is only a
starting point, and it has several limitations. First and foremost,
while its feature of not relying on any price forecasts (and only
learns through the history) may be considered as a strength, it
can also be viewed as a weakness, especially when the power
system is experiencing some emergency situations, such as the
sudden loss of generation assets/transmission lines. Demand
response is expected to be able to provide emergency response
in such situations. However, this is not possible within the cur-
rent MAB game framework. We are investigating approaches
for consumers to incorporate price forecasts (or any emergency
signals sent from ISOs) in their MAB algorithm. Second, the
current MAB game model does not have explicit modeling of
thermal loads (e.g., HVAC) yet. In reality, such load resources
may be the major source of demand flexibility. We have
already started working towards this direction and obtained
some positive preliminary results, which will be reported in
our follow-up papers. Third, the theoretical results in [3]
are obtained without exogenous uncertainty. In this context,
however, uncertainties (such as renewable outputs, forced
outage of physical assets) are prevalent. To extend the results
in [3] to the case of exogenous uncertainty (faced by all agents)
would be a significant endeavor. Last and probably the most
fundamental issue is if there can be any theoretical results on
the gap of the social welfare between the ideal, centralized
approach and the MAB game approach, hence to be able to
gauge the efficiency (in terms of resource allocation) of the
MAB game approach.
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