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Abstract—The detection of double JPEG compression with the
same quantization matrix is a challenging problem in image
forensics. In this paper, a CNN framework is proposed to solve
this problem. This framework contains a preprocessing layer and
a well-designed CNN. In the preprocessing layer, the rounding
and truncation error images are extracted from continuous
recompressed input samples and then fed into the following
CNN. In the design of the CNN architecture, several advanced
techniques are carefully considered to prevent overfitting, such
as 1×1 convolutional kernel and global average pooling layer.
The performance of proposed framework is evaluated on the
public available image dataset (BOSSbase) with various quality
factors (QF). Experimental results have shown the proposed
CNN framework performs better than the state-of-the-art method
based on hand-crafted features.

Index Terms—Image Forensics, Double JPEG Compression,
the Same Quantization Matrix, Convolutional Neural Network.

I. INTRODUCTION

Nowadays, digital images have become an integral part
of our daily lives. However, with the aid of sophisticated
editing software such as Photoshop, digital images can be
tampered easily. The reliability and integrity of digital images
have been threatened, especially when digital images are used
as evidence in a court of law. Hence, image forensics has
become a popular research topic attracting more and more
attention of researchers in multimedia security. One of the
most significant techniques in image forensics is double JPEG
compression detection, since most of digital images are stored
in JPEG format and the tampering operation usually involves
the recompression process. Several methods have been pro-
posed to detect double JPEG compression successfully. For
detection of double JPEG compression with different quan-
tization matrices, existing methods applied statistical models
to extract distinguishing features, such as the distributions of
discrete cosine transform (DCT) coefficients [1], the first digit
distributions of non-zero AC coefficients [2], [3] and Markov
statistics [4], [5]. For detection of double JPEG compression
with the same quantization matrix, Huang et.al. [6] proposed
a novel detection scheme based on the observation that the
number of altered DCT coefficients between the nth and the
(n+1)th recompressed image monotonically decreases with the

value of n increasing. Yang et.al. [7] utilized the statistical
differences of rounding and truncation error blocks between
single and double JPEG compressed images to achieve more
robust detection performance. However, methods mentioned
above based on hand crafted features requires complicatedly
and arduously feature design process with professional foren-
sics knowledge.

In recent years, deep neural networks such as CNN have
been widely utilized in computer vision tasks [8], [9] and
achieved overwhelming superiority compared with traditional
methods. More recently, researchers in image forensics have
successfully explored the powerful representation learning
capability of deep learning to solve forensics tasks [10],
[11], [12], [13], [14], [15]. In [14], Wang et.al. proposed a
CNN-based method to detect double JPEG compression with
different quantization matrices, which extracts histograms of
DCT coefficients as the input. Inspired by [14], Amerini et.al.
[15] proposed a hybrid architecture combing CNNs in the
spatial domain and the frequency domain for double JPEG
compression detection. However, to the best of our knowledge,
there is not any deep learning-based method for the detection
of double JPEG compression with the same quantization
matrix in the literature.

In this paper, we proposed a novel CNN-based detection
pipeline for double JPEG compression with the same quan-
tization matrix. Note that, for abbreviation, double JPEG
compression refers to double JPEG compression with the same
quantization matrix hereinafter, unless otherwise specified.
The main contributions of this work are listed as follows:

1) In the preprocessing layer, error images [7] of input
samples caused by rounding and truncation operations
are extracted to enhance the slight traces left by double
compression and reduce the influence of various image
contents.

2) To prevent overfitting and extract more latent concept for
double JPEG compression detection, 1×1 convolution
filters are employed in deeper layers and a global
pooling structure is adopted before the fully connected
layer.

3) The performance of the proposed framework is evaluated

717

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018



on the public available image dataset (BOSSbase) [16]
with various quality factors (QF). Besides, the influence
of different network structures is analyzed in this paper.
Experimental results have shown better performance of
the proposed CNN framework than the state-of-the-art
method [7] based on hand-crafted features.

The rest of this letter is organized as follows. Section II
introduces the error image and its statistical properties. In Sec-
tion III, a novel framework to detect double JPEG compression
with the same quantization matrix is proposed based on CNN.
Section IV describes the details of our experiments and the
results of proposed method. In the end, a conclusion is drawn
in Section V.

II. ERROR IMAGE IN THE DECOMPRESSION PROCESS

JPEG is a widely used lossy compression standard for
digital images. There are three types of errors during the
JPEG compression and decompression process. The first one
is quantization error, which is caused by rounding the float
value of quantized DCT coefficients to their nearest integer
value. The second and third errors are rounding and truncation
errors, which occur in the JPEG decompression process. The
rounding error is defined as the difference between the float
reconstructed pixel within [0, 255] and its rounded version.
The truncation error is defined as the difference between the
float reconstructed pixel out of [0, 255] and its truncated
integer. In this work, only rounding and truncation errors are
applied to detect double JPEG compression.

Mathematically, the (n + 1)th encoding process can be
expressed as follows:

Dn+1 = [DCT (RT (IDCT (Dn ×Q)))/Q] (1)

where the subscript n denotes the times of JPEG recompres-
sion; Dn is the 8 × 8 quantized DCT coefficients matrix;
DCT (·) and IDCT (·) represent 8× 8 discrete cosine trans-
form and inverse discrete cosine transform separately; Q is the
quantization matrix; RT (·) denotes rounding and truncation
operations; [·] denotes the rounding operation; × and / are
component-wise operations. The rounding and truncation error
block En can be defined as:

En = RT (IDCT (Dn ×Q))− IDCT (Dn ×Q) (2)

To analyze the effect of rounding and truncation error, Eq. 1
can be rewritten as follows:

Dn+1 = [DCT (RT (IDCT (Dn ×Q)))/Q]

= Dn + [DCT (En/Q)]

= Dn +Rn

(3)

where Rn denotes quantized DCT coefficients of En. It can be
found that if Rn is a zero matrix, Dn+1 will be equal to Dn,
which means En+1=En. The authors in Ref. [7] call this kind
of blocks (Rn = 0) as stable block. Other blocks are treated
as unstable blocks. Furthermore, it can be observed that if
Rn=0, then Rn+1=0. It infers that stable blocks will remain
stable after more recompression processes. Meanwhile, Rn is

more likely to be a zero matrix with the number of recompres-
sion operations increasing. It means the numbers of unstable
blocks in single compressed and double compressed images
perform different convergent speed after recompressions. To
illustrate this phenomenon more intuitively, we calculated the
average number of unstable blocks after recompressions for
different QFs using BOSSbase[16] image dataset. In Fig. 1,
each point denotes the number of unstable blocks in the nth

decompression process. It can be observed that the number of
unstable blocks in double compressed images (n=2 to n=5)
converges more quickly to zero than that in single compressed
images (n=1 to n=4).
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Fig. 1. Variation tendency of the number of unstable blocks.

III. THE PROPOSED FRAMEWORK

A. Overall Detection Framework

The overall detection framework of the proposed method is
shown in Fig. 2. It consists of a preprocessing layer and a well-
designed convolutional neural network. The preprocessing
layer first extracts K rounding/truncation error images from
the input sample. As shown in Fig. 1, the number of unstable
blocks at the 4th decompression becomes relatively small for
different QFs. To balance detection capability and computa-
tional complexity, K is set to 3 in our work. The details of
rounding/truncation error image extraction are illustrated in
Section III-B. Then, three error images are stacked as three
input feature maps (3×H×W ) for the following CNN, where
H×W =256×256 (spatial resolution).

B. The Details of Preprocessing Layer

To reduce the impact of various image contents and enhance
traces left by double compression, a preprocessing layer is
proposed in the detection pipeline as shown in Fig. 2. For
the sake of simplicity, the input sample of our method is a
grayscale image. For color image, only luminance component
is considered. The extraction process of error images is illus-
trated as follows:
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Fig. 2. The framework of the proposed detection method.

1) Decode the input image I1 to PGM file P1, and extract
the error image E1 according to Eq. 2.

2) Recompress the PGM file Pn to JPEG image In+1

with the same quantization matrix (n=1, 2, · · · ). Then
decode In+1 to PGM file Pn+1 and extract its error
image En+1 at the same time.

3) Repeat step 1 to 2 until K error images are ob-
tained (K = 3). Then construct the input data (E =
{E1, E2, E3}) for the CNN.

C. Network Architecture
Table I illustrates the whole architecture of the proposed

CNN. The details are listed in Table I, such as kernel sizes and
steps of convolutional operations. In this work, the dimension
of input data to CNN is 3×256×256 while the output is a 2-D
vector. The output vector represents the probabilities for each
class (p = [p(H0|E), p(H1|E)], where E denotes the input
sample; H0 denotes the input image is single compression
image and H1 denotes the input image is double compression
image). Finally, the p(H1|E) is compared with a pre-defined
threshold (0.5) and obtain the detection result.

As shown in Table I, this architecture contains six layers.
The first to the fourth layers are convolutional and pooling
layers. The last two are fully-connected layer and softmax
layer respectively. Similar to traditional CNN architecture, the
kernel size of the first two convolutional layers is set to 5×5
in order to explore relations between neighboring elements
and learn low-level local patterns. According to [17], we use
1×1 convolution kernel in the deeper layers to avoid fitting
image content information in training set too much well. Each
convolutional layer is followed by a pooling layer. The first
three pooling layers are max pooling with window size 5×5
and stride size 2×2. After Conv4, a global average pooling
layer is employed to replace the traditional fully-connected
layer. This structure has been proved to be effective to prevent
overfitting and improve the network generalization ability in
[18]. The batch normalization (BN) [19] and rectified linear
unit (ReLU) activations are applied to the output of every
convolutional layer. Finally, a 128-D feature vector is obtained
after the global average pooling layer. The fully-connected
layer transforms the 128-D feature to a 2-D feature and feed

TABLE I
THE OVERALL ARCHITECTURE OF CNN

LAYER SIZE1,2 STRIDE OUTPUT

L1
Conv1 16×5×5 1×1 16×256×256

BN+ReLu - - 16×256×256
Pooling1 5×5 2×2 16×128×128

L2
Conv2 32×5×5 1×1 32×128×128

BN+ReLU - - 32×128×128
Pooling2 5×5 2×2 32×64×64

L3
Conv3 64×1×1 1×1 64×64×64

BN+ReLU - - 64×64×64
Pooling3 5×5 2×2 64×32×32

L4
Conv4 128×1×1 1×1 128×32×32

BN+ReLU - - 128×32×32
Pooling4 32×32 32×32 128×1×1

L5-L6 FC1 128×2 - 2
Softmax 2×2 - 2

1 For Convs (nOutput×kW×kH), “nOutput” denotes the number of
output feature maps; kW×kH denotes the spatial size of convolutional
kernels.

2 For Poolings (kW×kH), kW×kH denotes the spatial window size.

it to a two-way softmax. Cross-entropy loss is selected to train
the CNN.

IV. EXPERIMENTS

In this section, several experiments are conducted to demon-
strate the superiority of the proposed method for double JPEG
detection. The significance of the preprocessing layer and the
CNN structures of our method is investigated. Furthermore, the
proposed method is compared with the state-of-the-art method
[7] referred to as Yang’s method.

A. Experimental Setup

To evaluate the performance of the proposed method, the
image dataset BOSSbase v1.01 [16] is used in our experi-
ments. BOSSbase v1.01 dataset contains 10000 uncompressed
images with the size 512× 512. To fit the structure of the
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proposed CNN, images are first rescaled to 256×256. Please
note, there is no lossy compression trace introduced to these
uncompressed images in the rescaling process. Then, libjpeg
tool [20] is employed to encode and decode images. Then
several subsets Si,q are constructed, where i denotes the
number of compression operations (i ∈ {1, 2}) and q denotes
the quality factors (q ∈ {95, 90, 85, 80, 75, 70, 60, 40, 20}). For
each QF, 10000 pairs of JPEG images are randomly divided
into three parts with the ratio 8:1:1, namely the training set,
the validation set and the testing set. All experiments are
conducted using Tensorflow toolbox.

The detection accuracy rate (AR) is calculated as follows:

TPR =
TP

P
× 100%

TNR =
TN

N
× 100%

AR =
TP + TN

P +N
× 100%

(4)

where P denotes the total number of positive samples, N
denotes the total number of negative samples, TP denotes
the number of correctly classified positive samples and TN
denotes the number of correctly classified negative samples.

B. Hyperparameters

Weights in convolution kernels and fully-connected layers
are initialized with random numbers generated from the zero-
mean Gaussian distribution with standard deviation of 0.01.
The value of bias in each layer is initialized as zero. Mini-
batch gradient descent is selected to train the CNN model in
our experiments. The size of a mini-batch is set to 64 (32
positive samples and 32 negative samples) for each iteration.
The momentum is fixed to 0.9. The initial learning rate is set
to 0.001 and decrease 10% for every 20 epochs. The training
phase of CNN is stopped at 100th epoch. The “dropout”[21]
is used after the global average pooling.

C. The Influence of the Preprocessing Layer

In this experiment, the significance of the preprocessing
layer is investigated. In the preprocessing layer, K error im-
ages are extracted from continuous recompressed JPEG images
to reduce the disturbance of various image contents. According
to the analysis in Section III-A, K is set to 3 in this work. We
investigated the performance of the proposed CNN without
the preprocessing layer. Hyper-parameters for optimizing the
proposed CNN without the preprocessing layer are carefully
adjusted. However, for all selected QFs, the accuracy of the
proposed CNN without the preprocessing layer is about 50%.
It infers the CNN taking images as inputs directly is hard
to learn the distinguishing representations for double JPEG
compression detection. In other words, the preprocessing layer
is significant in our detection pipeline.

Besides, the importance of the correlation information be-
tween error images after different times of recompressions is
also studied. The performance of taking 3 error images as
input sample and 1 error image as input sample are evaluated.
As shown in Table II, the average AR of taking 1 error image

TABLE II
EVALUATION ON THE INFLUENCE OF THE NUMBER OF ERROR IMAGES (%)

Quality
Factor

3 error images
as input sample

1 error images
as input sample

95 100 100
90 98.55 95.20
85 94.60 91.15
80 94.00 90.85
75 83.25 78.20
70 82.35 77.65
60 82.00 76.50
40 80.25 74.45
20 74.35 68.75

Average 87.71 83.64

as input sample is only 83.64%, which is lower than the “3
error images” version (87.71%) by a distinct margin (4.07%).
It illustrates the correlation information between error images
undergoing different times of recompressions is helpful for
detection.

D. Analysis of Different CNN Structures

How to determine the optimized structure of the CNN
is the significant issue. In Table III, we record the average
detection accuracies evaluated on the QFs in Section IV-A and
the corresponding model size with different modified CNN
structures. The number of weights and biases in the CNN is
considered to calculate the model size. These results verified
the proposed CNN in Section III-C, which includes 1× 1
convolution kernels and the global average pooling layer, has
more efficient detection capability and distinctively smaller
model size.

TABLE III
EVALUATION ON THE INFLUENCE OF DIFFERENT CNN STRUCTURES

Proposed 3×31 5×52 FC3

Average AR (%) 87.71 87.41 86.83 86.95

Model Size 25K 107K 271K 17M
1 3×3 = replace all 1×1 convolution kernels with 3×3

kernels.
2 5×5 = replace all 1×1 convolution kernels with 5×5

kernels.
3 FC = replace the global average pooling with fully-

connected layer.

E. Performance Evaluation on Double Compression Detection

In this experiment, the detection performance is evalu-
ated for different QFs, where QF is selected from the set
{95, 90, 85, 80, 75, 70, 60, 40, 20}. The overall results achieved
by our method and Yang’s method are shown in Table IV. It
can be observed that the proposed CNN-based method perform
better than Yang’s method in all cases. The average AR of
our method is 87.71%, which is 3.01% higher than 84.70%
achieved by Yang’s method. Even when the value of QF is very
low (e.g. 20), the proposed method can still achieve 74.35%
detection accuracy. It can be concluded the proposed method
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TABLE IV
THE DETECTION ACCURACIES (%) ACHIEVED BY THE PROPOSED METHOD

AND YANG’S METHOD

Quality Factor The proposed CNN Yang’s method

95 100 100
90 98.55 95.25
85 94.60 92.30
80 94.00 89.60
75 83.25 78.03
70 82.35 79.50
60 82.00 79.45
40 80.25 76.65
20 74.35 71.50

Average 87.71 84.70

has more robust detection capability than the state-of-the-art
method distinctively for different image qualities, which is
important in real forensics applications.

F. CNN Generalization Capability

In this experiment, UCID [22] dataset (1338 images of size
384×512) is used to test the generalization capability of the
proposed CNN. The images in UCID dataset are first resized
to 256×256. Then, we used the pre-trained CNN models to
test the UCID dataset. The results are shown in Table V. It
can be seen that the performance of the proposed CNN on
UCID dataset is still good. It shows that our method has good
generalization ability.

TABLE V
THE DETECTION ACCURACIES (%) ON UCID DATASET BY OUR METHOD

QF 90 80 70 60 40 20
AR 96.89 93.27 86.28 85.46 83.27 80.38

V. CONCLUSION

In this paper, a novel CNN-based method is proposed. In the
preprocessing layer, error images are extracted by continuously
recompressing input samples to reduce the disturbance of
various image contents and enhance the traces of double com-
pression. The architecture of the CNN is carefully designed to
prevent overfitting by considering several advanced structures
such as 1× 1 convolution kernels and the global average
pooling layer . The well-known BOSSbase dataset is used to
conduct experiments. Experimental results demonstrated that
the proposed method outperform the state-of-the-art method
on with different quality factors.

VI. ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (No. 61572320, 61572321). The corre-
sponding author is Dr. Xinghao Jiang.

REFERENCES

[1] A. C. Popescu and H. Farid, “Statistical tools for digital forensics,” in
Proceedings of the 6th International Conference on Information Hiding,
2004, pp. 128–147.

[2] D. Fu, Y. Q. Shi, and W. Su, “A generalized benford’s law for jpeg
coefficients and its applications in image forensics,” Proc. SPIE, vol.
6505, p. 65051L, 2007.

[3] B. Li, Y. Q. Shi, and J. Huang, “Detecting doubly compressed jpeg
images by using mode based first digit features,” in Multimedia Signal
Processing, 2008 IEEE Workshop on, 2008, pp. 730–735.

[4] S. Shang, Y. Zhao, and R. Ni, “Double jpeg detection using high order
statistic features,” in IEEE International Conference on Digital Signal
Processing, 2017, pp. 550–554.

[5] Z. F. Wang, L. Zhu, Q. S. Min, and C. Y. Zeng, “Double compression
detection based on feature fusion,” in 2017 International Conference
on Machine Learning and Cybernetics (ICMLC), vol. 2, July 2017, pp.
379–84.

[6] F. Huang, J. Huang, and Y. Q. Shi, “Detecting double jpeg compression
with the same quantization matrix,” IEEE Transactions on Information
Forensics and Security, vol. 5, no. 4, pp. 848–856, Dec 2010.

[7] J. Yang, J. Xie, G. Zhu, S. Kwong, and Y. Q. Shi, “An effective method
for detecting double jpeg compression with the same quantization
matrix,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 11, pp. 1933–1942, Nov 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[9] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, June 2014, pp. 1725–1732.

[10] J. Chen, X. Kang, Y. Liu, and Z. J. Wang, “Median filtering foren-
sics based on convolutional neural networks,” IEEE Signal Processing
Letters, vol. 22, no. 11, pp. 1849–1853, Nov 2015.

[11] L. Bondi, L. Baroffio, D. Gera, P. Bestagini, E. J. Delp, and S. Tubaro,
“First steps toward camera model identification with convolutional
neural networks,” IEEE Signal Processing Letters, vol. 24, no. 3, pp.
259–263, March 2017.

[12] Y. Rao and J. Ni, “A deep learning approach to detection of splicing and
copy-move forgeries in images,” in 2016 IEEE International Workshop
on Information Forensics and Security (WIFS), Dec 2016, pp. 1–6.

[13] P. Rota, E. Sangineto, V. Conotter, and C. Pramerdorfer, “Bad teacher
or unruly student: Can deep learning say something in image forensics
analysis?” in 2016 23rd International Conference on Pattern Recognition
(ICPR), Dec 2016, pp. 2503–2508.

[14] Q. Wang and R. Zhang, “Double jpeg compression forensics based
on a convolutional neural network,” EURASIP Journal on Information
Security, vol. 2016, no. 1, p. 23, Oct 2016.

[15] I. Amerini, T. Uricchio, L. Ballan, and R. Caldelli, “Localization of
jpeg double compression through multi-domain convolutional neural
networks,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), July 2017, pp. 1865–1871.

[16] P. Bas, T. Filler, and T. Pevn, “Break our steganographic system: The
ins and outs of organizing boss,” Journal of the American Statistical
Association, vol. 96, no. 454, pp. 488–499, 2011.

[17] G. Xu, H. Z. Wu, and Y. Q. Shi, “Structural design of convolutional
neural networks for steganalysis,” IEEE Signal Processing Letters,
vol. 23, no. 5, pp. 708–712, May 2016.

[18] M. Lin, Q. Chen, and S. Yan, “Network in network,” Computing
Research Repository (CoRR), vol. abs/1312.4400, 2013.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” Computing Research
Repository (CoRR), vol. abs/1502.03167, 2015.

[20] T. Lane, “Libjpeg,” http://libjpeg.sourceforge.net/.
[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan 2014.

[22] G. Schaefer and M. Stich, “UCID - an uncompressed colour image
database,” Storage and Retrieval Methods and Applications for Multi-
media, vol. 5307, pp. 472–480, 2004.

721

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:45-0500
	Preflight Ticket Signature




