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Abstract— Translucency, defined as a jelly-like appearance, is 
a common clinical feature of basal cell carcinoma, the most 
common skin cancer. The feature plays an important role in 
diagnosing basal cell carcinoma in an early stage because the 
feature can be observed readily in clinical examinations with a 
high specificity of 93%. Therefore, translucency detection is a 
critical component of computer aided systems which aim at early 
detection of basal cell carcinoma. To address this problem, we 
proposed an automated method for analyzing patches of clinical 
basal cell carcinoma images using stacked sparse autoencoder 
(SSAE). SSAE learns high-level features in unsupervised manner 
and all learned features are fed into a softmax classifier for 
translucency detection. Across the 4401 patches generated from 32 
clinical images, the proposed method achieved a 93% detection 
accuracy from a five-fold cross-validation. The preliminary result 
suggested that the proposed method could detect translucency 
from skin images.  

Keywords—Translucency, deep learning, stacked sparse 
autoencoder, basal cell carcinoma 

I. INTRODUCTION  
Basal cell carcinoma (BCC) is the most common type of skin 

cancer among the white populations in the world[1]. Only in the 
United States alone, more than 4 million patients are diagnosed 
with skin cancer annually and 80% of them are BCC[4,14]. In 
addition, there is an increasing trend of the disease.[2-5]. The 
increasing rates is about 5% in Europe and is about 2% in the 
United States[3]. Despite the fact that BCC rarely causes 
mortality, the malignancy will destroy extensively the 
surrounding tissues and damage the skin structure aggressively 
in advanced stages[6-8]. Therefore, early detection of BCC is 
important for disease management. The initial recognition of 
skin cancer strongly relies on visual examination by physicians, 
following by a confirmation diagnosis based on biopsy and 
histological examination[9]. However, many research studies 
have been focusing on the development of computer-aided 

systems for detecting skin cancer automatically in order to 
relieve the pressure caused by the rapid growth of the diseases 
and the limited medical resources. These computerized systems 
may lead to a higher diagnostic accuracy for early stages as well. 

Translucency, defined as a jelly-like appearance, is an 
important characteristic feature of BCC. It is an optical 
phenomenon generated by the cancerous tumor[10-11]. 
Translucency plays an important role in the diagnosis of BCC 
because the feature can be readily observed in clinical 
examinations with a high specificity of 93% [13]. Therefore, 
detecting translucency is a key function for computer aided 
systems aimed at discriminating BCCs from benign skin 
conditions and other types of skin cancers as well.   

Previous works in automatic analysis of translucency in 
BCC have all been done by using dermoscopy images. 
Demorscopy is a non-invasive tool for skin cancer detection that 
enables the visualization of subsurface structures and 
patterns[15]. In [11], classification of BCC or non-BCC is done 
through using color and histogram measures of translucency. In 
[12], Stoecker et al. detected translucent areas from BCC using 
a texture-based segmentation method. However, clinical 
images, taken by color digital cameras, are the most convenient 
method for capturing diagnostic features. Unlike dermoscopy, 
which are often pressed against a skin lesion and lead to 
distortion of the skin surface and color appearance, clinical 
images are captured free from skin contact, and, hence, free of 
distortion of the translucency feature. Thus, it is important to 
investigate techniques using for automatic detection of 
translucency from clinical images. However, detecting 
translucency from BCC using clinical image is a challenging 
task because of different zooming levels, lighting conditions and 
imaging angles[9]. Therefore, comprehensive and powerful 
methods are needed, and in this study, we will apply a deep 
learning approach to manage these difficulties. 
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In this paper, we present a method based on a stacked sparse 
autoencoder (SSAE) for detecting translucency from patches of 
clinical BCC images, which were captured using a digital color 
camera in a contact free manner. SSAE is an unsupervised 
learning method with a fully connected architecture. The 
remaining of the paper is organized as followes: In section II, we 
describe the proposed framework used in this research. Section 
III presents the dataset used and the experimental results. 
Finally, section IV concludes the paper with a suggestion of 
future works. 

 
Figure 1: Examples of clinical basal cell carcinoma images 

showing translucency  
 

II. METHOD 
We proposed a SSAE-based framework for automatic 

translucency detection. SSAE is an unsupervised learning model 
which can learn high-level features directly from unlabeled data. 
Also, SSAE can perform pixel-level learning. In particular, 
SSAE are applied to patches of clinical skin images. Using 
patches have two advantages. Firstly, patches will increase the 
number of data points for the learning process. Secondly, 
patches will decrease the dimensionality of input data so that the 
fully connected network can be carried efficiently. The diagram 
of proposed method is shown in Figure 2, and the major 
components of the method will be described below. 

 

 
 

Figure 2: Diagram of proposed framework 

 

A. Sparse autoencoder 
An autoencoder is a neural network which learns high-level 

features in an unsupervised manner as shown in Figure 3. It 
reconstructs the input data at the output layer in order to 

discovery a hidden feature representation of the input data. 
Therefore, the autoencoder attempts to find the function 
ℎ",$ 𝑥 ≈ 𝑥 which will reconstruct the input 𝑥 as 𝑥 , where W 
is the weight of each hidden neuron and b is the bias. A sparse 
autoencoder is a type of autoencoder with a sparsity constraint 
which will be discussed below. From Applying a 
backprobagation algorithm to train the sparse autoencoder, the 
optimal (W,b) will be learned by minimizing the discrepancy 
between the input x and its reconstruction 𝑥. The cost function 
of training a sparse autoencoder is: 

𝐽()* = 	
1
𝑁
	 (𝑥01 − 	𝑥31)5	
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where the first term is the mean square error term which 
describes the error between the input data and its reconstruction. 
N is the number of the input data and the H is the number of 
hidden neurons. The second term is a weight decay term which 
aims to decrease the magnitude of the overall neuron weight in 
order to avoid overfitting. h is the attenuation coefficient of the 
weigh decay. The third term is the sparsity constraint term which 
constrains the average activation value of each hidden neuron to 
be close to zero. r is the desired activation, a free sparsity 
parameter, which determines the proportion of neurons being 
active and r’ is the average activation of jth hidden neuron. The 
aim of sparse constrain is to minimize rj using Kullback-Leibler 
(KL) divergence, KL(r||r@), between ρj and ρ. KL measures the 
difference of two distributions with the formulation: 𝐾𝐿(r||r@) 

= r𝑙𝑜𝑔 r
rD
+ 1 − r 𝑙𝑜𝑔 8Er

8ErD
 . b controls the weight of this 

penalty term. 
 

 
Figure 3: Structure of an autoencoder 

686

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



B. High-level features learning through SSAE 
The stacked sparse autoencoder is a neural network 

consisting of multiple layers of sparse autoencoders in which 
features are learned in a layer-by-layer manner. The output of 
each layer is wired to the input of the successive layer. For the 
purpose of detecting translucency from BCC in clinical images, 
we considered to use a two-layer sparse autoencoder. The 
architecture of the translucency detection framework is 
demonstrated in Figure 4. 

As Figure 4 shows, the color input patches (32 x 32 x 3) are 
fed into the first layer that are transformed to the feature 
representations h1 as the result of first layer training. Then the 
second layer are fed with the new feature representations to learn 
the high-level features h2. Finally, the high-level features learned 
from SSAE acts as the input to the softmax classifier for 
translucency detection. 

 
Figure 4: The proposed framework of the stacked sparse 

autoencoder and softmax classifier for detecting translucency 

C. Translucency detection through softmax classifier 
Softmax classifier is a supervised learning method which is 

a generalization of Logistic Regression. Softmax categorizes the 
newly learned features into one of the label classes which has 
the highest probabilities. For instance, the classifier produces the 
probability of the presence of translucency in an input patch t=1 
as follows: 

P t = 1 z = 	
1

1 + 𝑒EJ
	 

where z is the learned high-level feature.  

And the softmax classifier is trained by minimizing the 
cross-entropy between the estimated class q and the true class p: 

H = 	
1
𝑁

𝑝0@𝑙𝑜𝑔𝑞0@ + (1 − 𝑝0@)
N

078

𝑙𝑜𝑔
9

@78

1 − 𝑞0@ , 

where N is the total number of inputs and C is the number of 
classes. In our case, C is 2. 

For training the softmax classifier, the high-level features 
learned from SSAE, which regard as the input, are fed into the 
classifier with the associate labels since softmax learns in 
supervised manner. Then softmax classifier will ready for 
detecting translucency according to the calculated probability of 
patches contain translucency. 

III. EXPERIMENT 

A. Dataset 
The dataset we used consists of 32 clinical images of basal 

cell carcinoma collected from 32 patients in Vancouver Skin 
Care Centre. (See Figure 1.) The images are 3008 ´ 2000 pixels. 
The targeted lesion is near the center of the image with different 
sizes. All cases were confirmed by histopathological 
examinations. 

Translucent areas from these images were segmented by an 
expert dermatologist (D.I.M.). For the purpose of detecting 
translucency better, we created region of interest(ROI) using 
bounding box. The size of each ROI images depends on the size 
of targeted lesion in original clinical image. Some examples 
were shown in Figure 5. The size of ROI image in (a) is 492 ´ 
512 and size of ROI image in (b) is 1024 ´ 1228. Then we 
divided these ROI images into non-overlapped patches. A patch 
contains translucency was labeled as 1 and 0 for non-
translucency. The total number of patches were 4401; there were 
797 translucent patches and 3604 non-translucent patches. 
Examples of extracted patches with and without translucency is 
given in Figure 6.  

 
 Figure 5: Examples of creating ROI images 

 

 
Figure 6: Examples of patches: translucent patches are in the 

left side and non-translucent patches are in the right side 

B. Parameters setting 
In the experiment, patch size was chosen as 32 ´ 32 pixels. 

The size of input for SSAE was 32 ´ 32 ´ 3 = 3072. Because all 
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the images are RGB, all three color channels are inputted to the 
network simultaneously. For successive layers of SSAE, the 
number of hidden nodes in first and second layer were chosen h1 
= 225 and h2 = 100. For two control parameters, the sparsity 
parameter b was set to 4 and the weight decay parameter h was 
set to 0.001. r which is the desired activation parameter was set 
to 0.05. Initialization of bias and the weight of each neuron are 
random at the beginning of training.  

C. Results 
Applying the proposed SSAE network with a five-fold cross-

validation to the patches, the result of translucency detection is 
illustrated in Table1. The SSAE method achieved an accuracy 
of 0.93, a sensitivity of 0.77 and a specificity of 0.971. The 
Receiver Operating Characteristic Curve (ROC) of the proposed 
method is shown in Figure 7. From the experiment results, we 
demonstrated that SSAE work well in detecting translucency in 
patches of clinical images. All experiments were performed on 
a PC (Intel core i7 with 16GB RAM) and Geforce GTX 
NVIDIA Graphics processor Unit.  

 
 Sensitivity Specificity PPV PPN Accuracy 

SSAE+SMC 0.77 0.971 0.873 0.942 0.93 

 

Table 1: Result of translucency detection 

 

 
Figure 7: the ROC curve for translucency detection of 

proposed method 

 

IV. CONCLUSION 
In this paper, we present an unsupervised deep learning 

framework based on a stacked sparse autoencoder for 
translucency detection from patches of clinical BCC images. 
This method achieved a detection accuracy of 93%, with a 
specificity and sensitivity of 97.1% and 77%, respectively. The 

results demonstrated that the method appears to be able to detect 
translucency from skin patches. For the next step of our study, 
we plan to expand this method to infer translucency in a skin 
lesion according to the skin patches of the lesion. And then we 
will build a computer-aided diagnosis system for BCC based on 
translucency and other diagnostic features. 
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