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Abstract— Mild Cognitive Impairment (MCI) is known as a 
transitional state between normal aging and Alzheimer's disease. 
Early and reliable detection of MCI can prepare progressive 
dementia. In this study, we propose a novel application area of 
machine learning in the clinical diagnosis of MCI. Our assessment 
system includes a commercial smartwatch and a wireless pulse 
oximeter. We investigate predictors from photoplethysmography 
(PPG) and gait (accelerometer and gyroscope) sensor data. We 
also demonstrate a feature selection algorithm for a better 
classification of MCI from cognitively healthy (CH) using the 
sensor-derived features. Our classification accuracy result is 82% 
with the PPG dataset and 86% with the gait dataset from 69 
elderly participants (72.45 10.55 years; 34 MCI and 35 CH), 
which is a higher classification accuracy than only using the 
administered neuropsychological screening instrument. These 
serve the criteria of mobility, non-invasiveness and easy 
assessment, and a reliable data transmission link through a 
connected smartphone. This study supports that sensor-derived 
parameters have the potential to support a clinical diagnosis and 
to reduce the diagnostic burden on healthcare professionals.  

I. INTRODUCTION 

Dementia is one of the major causes of death among the 
geriatric population in the United States. There is no complete 
cure or treatment to stop the most progressive dementia [1]. 
Currently available treatments assist to temporarily improve 
symptoms. Cognitive impairment is typically present in the 
early stage of dementia [2] and is often the only preliminary 
indicator of the underlying condition. Mild Cognitive 
Impairment (MCI) is known as a transitional state between 
normal aging and Alzheimer's disease [2]. MCI is associated 
with dementia risk and detectable as the earliest clear-cut 
cognitive deficit [3]. 

The current detection of cognitive deficits is burdensome to 
administer and liable to misinterpretation. There is no one test 
to determine the overall dementia evaluation [1]. The 
symptoms of dementia vary and gradually appear over a 
number of years and include the decline in mental ability, such 
as memory loss and difficulty with reasoning and 
communication. Memory decline can also be caused by 
depression, excessive use of alcohol, or vitamin deficiencies 
[1]. Overlapping symptoms with other diseases make it 
difficult for doctors to determine the diagnosis immediately. 
The initial cognitive impairment could be noticed by short-
administered neuropsychological tests, but the diagnosis of a 
specific type of dementia requires a high level of certainty in 

medical history, laboratory tests, and characteristic changes in 
mental ability [1]. We need a reliable detection of MCI that 
enables one to diagnose and then use that information to delay 
the onset of dementia.  

Several sensors can be used for a clinical diagnosis of MCI. 
A study by Karakostas et al. [4] used a camera, tag sensors, a 
microphone, and a wristwatch to support clinicians in dementia 
assessment. They mainly focused on a semantic interpretation 
of speech analysis and daily activities recognition in a lab 
environment, but this application is stationary and expensive to 
install. In our study, we concentrated mobile and wearable 
devices including photoplethysmography (PPG), accelerometer, 
and gyroscope sensors to discriminate between MCI and the 
cognitively healthy (CH). Our assessment system includes a 
commercial smartwatch and a wireless pulse oximeter. This 
approach offers mobility, non-invasiveness and easy 
assessment, and a reliable data transmission link through a 
connected smartphone. Our proposed system is easily applied 
to clinical setting or even in the daily life. 

We verified that the PPG and gait signals are relevant to 
detect a person’s cognition status through many other studies. 
PPG uses an optical technique to measure changes in the blood 
volume in the blood vessel [5]. PPG signals are acquired by 
absorption of red and infrared wavelengths that passed through 
the finger-tip or the earlobe [6]. The heart rate variability 
(HRV), which is the beat-to-beat variations in heart rate, can be 
measured by PPG. The autonomic nervous system (ANS) 
influences the human body's major physiological changes 
including the heart rate, blood pressure, and respiration. HRV 
is related to the individual's cognitive function including 
memory performance, attention, and executive function. 
According to a study by Hansen et al (2003), the higher HRV 
group has a better performance of more correct responses and 
faster reaction time on a working memory test and a 
continuous performance test [7]. A study by Duschek et al. 
(2009) investigated that on-task peak-to-peak interval and 
power of mid-frequency band of HRV are negatively 
correlated with attentional function [8]. Taelman et al (2009) 
demonstrated that a mental task changes the heart rate and 
HRV [9]. Shah et al. (2011) had a study that controlled familial 
and genetic influences and found a statistically positive 
association between HRV and verbal memory and a learning 
task [10]. 
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Gait is reliant on cognitive functions and gait abnormalities 
are common in the early stages of cognitive decline [11]. Gait 
requires multiple cognitive inputs to maintain upright posture 
and motor control and complex cognitive functions to shift and 
avoid obstacles [11]. The study of Verghese et al. (2002) 
explains that subjects with neurologic gait abnormalities have a 
higher chance of experiencing non-Alzheimer's dementias [12]. 
The neurologic gait abnormalities were determined by board-
certified neurologists in their study [12]. Many other studies 
that have examined the gait of older adults demonstrate that 
gait velocity and stride length decreases during aging [11]. 
Most smartphone and smartwatch apps provide simple step 
counts using an accelerometer but do not provide the detailed 
qualities of a person’s gait needed to detect the abnormalities. 
As above studies declared that HRV and gait quality are highly 
associated with a person’s cognitive level, a system using PPG, 
accelerometer, and gyroscope sensors can highly support a 
clinical diagnosis of MCI. 

Furthermore, we used machine learning algorithms for a 
classification of MCI from CH. A novel feature selection 
algorithm is proposed for the PPG and gait signal derived 
features. Selecting an optimal subset of relevant features helps 
to avoid overfitting by a high dimensionality and to improve 
the learning performance [13]. There are three methods for 
supervised feature selection: filter, wrapper, and embedded 
method. The filter method prunes low-scoring features, while 
the wrapper method searches for an optimal feature subset by 
evaluating each subset by the pre-determined classifier’s 
predictive accuracy [14]. The filter method only looks at the 
intrinsic properties of data so it is easy to scale the very high 
dimensionality [13]. The other hand, the wrapper method 
includes interaction with the selected classifier but requires a 
high computational cost to search in the space of possible 
feature subsets [13]. The embedded method is a hybrid of both 
filter and wrapper method, which filters the features by the 
statistical criteria first, and then select candidate subsets with a 
given cardinality [14]. The embedded method is less 
computationally intensive than the wrapper method. Several 
feature selection techniques are suggested through other studies, 
such as information gain, Euclidean distance, or the weight 
vector of the support vector machine [13]. However, a single 
feature selection method did not provide a remarkable 
classification result with our dataset. We propose a feature 
selection algorithm (Figure 5) to overcome the existing 
methods. The objective of this study is the following:  
• To investigate reliable makers from PPG and gait signals. 
• To validate PPG and gait sensor-derived parameters for 

classification between MCI and the cognitively healthy. 
• To provide an optimal feature selection algorithm to support 

a clinical diagnosis of MCI. 
Our classification accuracy result was 82% with the PPG 
dataset and 86% with the gait dataset from 69 elderly 
participants (72.45 ± 10.55 years; 34 MCI and 35 CH), which  
is a better classification accuracy than only using the 
administered neuropsychological screening instrument. Our 
design will support medical professionals being able to get a 
quick and reliable marker of a person's cognitive status and 

provide appropriate interventions. Our design will also assist in 
reducing the diagnostic burden on healthcare professionals. 

II. DATA ACQUISITION 

We designed a simple sensor data assessment system using a 
wireless wearable device and a commercial smartwatch to 
assess PPG and gait signals. 

A. System Design 
The assessment system architecture is shown in Figure 1. 

Nonin Wireless Finger Pulse Oximeter (Nonin Onyx II 9560; 
Nonin Medical, Plymouth, MN) [15] takes several 
physiological data: heart rate in beats per minute (BPM), 
peripheral capillary oxygen saturation (SpO2), and PPG. This 
pulse oximeter is completely non-invasive, wireless, and 
transmits a PPG signal with a 75 Hz sample rate. Nonin pulse 
oximeters have been used in several clinical trials [2], [16] 
because of the portability and convenience. Also, Samsung 
Smartwatch (Samsung Gear Live; Samsung Electronics, 
Suwon, South Korea) [17] provides three-axial accelerometer 
and gyroscope signals. It was used to record gait parameters of 
each participant and operated by Android Wear. A customized 
Android app used Nonin software API and Android Wear API 
[18] to transmit sensor data from the pulse oximeter and 
smartwatch to an Android phone via Bluetooth. The Android 
app transferred collected data to a Health Insurance Portability 
and Accountability Act (HIPAA) secure cloud server via Wi-Fi. 
The PPG sensor data was stored every minute during the 
measurement and the smartwatch sensor data was stored as 
soon as each gait measurement is completed.  

B. Neuropsychological Assessment 
This paper includes sensor data and neuropsychological data 

from 69 elderly participants who were recruited for the 
longitudinal aging study from the Department of Neurology, 
Psychiatry, and Computer Science at University of California, 
Los Angeles. The longitudinal aging study is a UCLA IRB 
approved yearly longitudinal-term research to characterize 
healthy aging, MCI, and dementia in regard to multiple factors 
for those who are 50 years and above. A series of tests were 
administered to evaluate the subject’s mental abilities 
including memory, attention, language, visuospatial skills, and 
mental flexibility during each neuropsychological visit. We 
have collected PPG signal data during three 

 

Fig. 1   System architecture for PPG and gait signal assessment. 
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neuropsychological tests that measure memory and attention: 
California Verbal Learning Test (CVLT), Auditory Consonant 
Trigrams (ACT), and Stroop. 
• CVLT measures immediate verbal memory span and level of 

interaction between verbal memory and conceptual ability. 
Each of the 16 items in each CVLT list belongs to one of 
four categories. For example, a CVLT list can be a shopping 
list containing four names of fruits, clothing, tools, and 
spices [19].  

• ACT measures the level of memory and attention using a 
distractor task. The examiner gives three letters as a test item 
and a starting number to count immediately. The examinee 
should count the starting number backward until signaled to 
stop, then recall the three letters [19]. 

• Stroop measures the level of concentration effectiveness 
because calling out the ink color of the word written in the 
different colors takes a longer time than reading a word [19]. 

These tests are selected because they are the most complex 
cognitive tasks among other neuropsychological tests and may 
cause some physiological changes during the assessment. 
These three tests are considered as being mental stressors for 
PPG assessment.  

C. Measurement Protocol 
When a participant comes for the neuropsychological study 

visit, the informed consent form is given. The examiner 
launches the pre-installed Android app on the smartphone and 
registers the participant with the corresponding subject ID. The 
subject completes a wellness questionnaire by choosing one 
out of five scale numbers. The wellness questionnaire has five 
criteria: fatigue, mood, stress level, sleep quality of the day 
before, and sleep duration in hours and minutes. These criteria 
were modified from the wellness questionnaire for athletes, 
which was created by McLean et al. (2010) [20]. 

The participant wears a fingertip pulse oximeter on the index 
finger of the non-dominant hand. The participant is asked not 
to talk or move during the measurement to reduce possible 
artifacts on the signal. The Bluetooth connectivity and 
functionality of the devices is confirmed by the examiner, then 
the examiner presses the start button on the app to begin the 
measurement session. The initial PPG signal data is collected 
for three minutes (Figure 2). The pulse oximeter is removed 
after the measurement. 

The Samsung smartwatch is placed on the participant's non-
dominant wrist. The pre-installed Android Wear app is started 
by the examiner. The participant walks the 30 meters of 
hallway beginning at the interior end of the hallway and 
touching the window of the other end, finishing upon return to 
the initial location (60m total walk-turn-walk in Figure 2). 

The neuropsychological testing begins after collecting the 
initial sensor data. The examiner asks the participant to again 
put the pulse oximeter on the index finger right before starting 
the CVLT, ACT, and Stroop tests. Because the duration of the 
three tests usually takes less than 30 minutes, the physiological 
measurement automatically finishes after 30 minutes, unless 
the pulse oximeter is dismounted manually before the 30 
minutes. The participant is allowed to talk, but large hand 
gestures are restricted during the measurement period. The rest 
of the neuropsychological testing is continued after the PPG 
measurement with the mental stressors is completed (Figure 2). 

As soon as finishing the entire neuropsychological testing, 
the PPG and gait measurement occurs again with the same 
procedure of the initial assessment (Figure 2). The transmitted 
signal data are stored in the database wirelessly through the 
smartphone. 

D. Datasets 
Table I shows the summary of demographics of participants. 

We formed 63 PPG datasets and 53 gait datasets from 69 
participants, less than 69 because of system malfunction during 
a few of the measurements. Two datasets are independently 
used for feature extraction, feature selection, and classification. 
For the result of three neuropsychological tests, we used the 
percentile rank of Long Delay Free Recall Correct on the 
CVLT, the percentile rank of total correct across the first two 
trials on the ACT, and the percentile rank of T-score of the 
Stroop Color and Word Test. The results from the three 
neuropsychological tests, wellness questionnaire, and 
demographics are used in both datasets. The preliminary 
diagnosis of participants was a target that we want to predict 
through learning algorithms. PPG and gait datasets had 32 and 
27 MCI groups respectively. The MCI group includes all 
different types of MCI, such as amnestic and non-amnestic, on 
a single domain or multiple domains, because of the small 
dataset. 

Each feature vector was normalized from 0 to 1 because 
each feature vector has a different range. For example, the 

 

Fig. 2   Measurement protocol during the neuropsychological visit. 
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range of heart rate in beat per minute is from 36 to 130 BPM, 
but the range of average difference between peaks is from 
686.6 to 1524.9 milliseconds. Higher scalar value of feature 
vector can influence the classification algorithms. Therefore, 
normalization is an important process to have the same length 
of the range in feature vectors.  

III. FEATURE EXTRACTION 

Raw sensor data carries both useful and noisy information. 
First, we cleaned the noisy information from the raw sensor 
data. Then, we extracted possible features using digital signal 
processing and a peak detection algorithm. We also added 
statistical features of each sensor signal using the sliding 
window approach. We used Python programming language 
with Scikit-learn [21] open-source software. 

A. Pre-processing and Peak Detection 
PPG signals using a pulse oximeter are easily corrupted by 

motion artifacts including respiration and voluntary finger 
movements [6]. Because we controlled the possible motion 
artifact during the data acquisition, we simply calibrated each 
PPG signals by removing the linear trend of time-series (Figure 
3). Different patterns and shapes are observed by different PPG 
signals of a participant.  

The Butterworth filter was used to remove noise from the 
measured gait signals. The Butterworth filter is designed to 
have a flat frequency response in the passband, while the 

frequency response amplitude of the filter rolls off toward zero 
in the stopband [22]. The Android API provides the ability to 
set a delay at which the sensor sample is received [23]. Our 
assessment system collected accelerometer and gyroscope 
sensor values simultaneously through an Android smartwatch. 
It recorded one timestamp for the two sensor values and caused 
irregular delays from 5 milliseconds to 2,145 milliseconds. We 
averaged different sampling delay (d) and obtained the 
sampling rate frequency (fs) using (1) [23]. 
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The N is the number of samples per measured signal. One tenth 
and one fourth of the sampling rate frequencies were used to 
set the cut-off of low pass and high pass of the filter 
respectively. As shown in Figure 4, the Butterworth filter 
cleans noise and restores missing values due to irregular delays. 
Because of several long delays, a signal before using the filter 
mostly has flat peaks and some steps, however, a filtered signal 
is smoother. Consecutive walking waves are missing in the 
middle of the signal because it is a turning point during the 
walk-turn-walk activity. The Butter-worth filter clearly refines 
peaks of the signal and flattens noise during the turn.  

Peaks are significant points to characterize the signal. Peaks 
on each signal are important for both HRV and gait analysis. 
The magnitude of the accelerometer signal was calculated by 
(2) and used to reduce the sensitivity of three-axial smartwatch 
rotation [24]. 
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The x, y, and z represent each orthogonal axis and i 
corresponds to time. The magnitude of the accelerometer 
signal was mainly used to extract gait variables.  

A peak detection algorithm by Duarte [25] was applied to 
detect peaks of each signal correctly. This peak detection 
algorithm works by setting up different parameter values: 
minimum peak height (MPH) and minimum peak distance 
(MPD) [25]. Both PPG and gait signals are periodic due to 
continuous heart activity and walking activity. We expected to 
have an equal distance between peaks for each signal. We 
found a peak detection with MPH as 0.4 and MPD as 2 
samples performs well on the gait signals, while MPH as 10 
and MPD as 30 samples performs correctly on the PPG signals. 

B. HRV and Gait Variables 
HRV variables were extracted from the time-domain and the 

frequency-domain of each PPG signal. We followed guidelines 
for the HRV from the Task Force of The European Society of 
Cardiology and The North American Society of Pacing and 
Electrophysiology (1996) [26]. The task force provides HRV 
analysis using Electrocardiography (ECG) only, but we applied 
the same guidelines to the PPG since ECG and PPG are highly 
correlated to each other. The R peak is the highest amplitude 
on a typical ECG and is an important marker for HRV analysis. 

TABLE I 
DEMOGRAPHIC SUMMARY OF PARTICIPANTS. 

Variable Total 
(n = 69) 

PPG 
Dataset 
(n = 63) 

Gait 
Dataset 
(n = 53) 

Age, years 72.45 
± 10.55 

72.76 
± 10.55 

71.58 
± 11.36 

Male, % 49.28 49.21 47.18 

Education, years 17.06 
± 2.25 

17.00 
± 2.23 

16.94 
± 2.33 

Right-handed, % 86.96 85.71 88.68 

MCI diagnosis, % 49.28 50.79 50.94 

 

 

Fig. 3   A sample PPG signal with the peak detection. 
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Several studies have proved that peaks of PPG coincide with 
the R peaks of ECG [5, 27].  

The peak detection algorithm was applied on the time-
domain of the PPG signal. Three different states of PPG 
signals were measured for each participant: initial, mental 
stress, and final (Figure 2). We calculated the mean (MeanPP) 
and standard deviation (SDPP) of the peak-to-peak (PP) 
intervals for each state. The square root of the mean squared 
differences of successive intervals (RMSSD) was also 
computed using (3), which is commonly used as a significant 
metric of HRV. 
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The difference between the RMSSD and MeanPP of each state 
is also extracted as a feature. These differences may represent 
ANS reaction of participant about the mental stressor. Because 
the pulse oximeter provides instant heart rate values, the 
average heart rate for each state was also calculated.  

The power spectrum of the PPG signal was computed using 
a fast Fourier transform (FFT). Since our recordings for PPG 

were less than 30 minutes in duration and considered therefore 
as short-term, the power spectrum was divided into three 
frequency bands: very low frequency (VLF; £ 0.04 Hz); low 
frequency (LF; 0.04 to 0.15 Hz); and high frequency (HF; 0.15 
to 0.4 Hz) [26]. The power of each frequency band became a 
distinct feature. The distribution of power of LF and HF may 
vary due to the modulations by the ANS. Thus, the ratio of LF 
to HF was calculated. Total power, which is the highest peak in 
the frequency domain and within the frequency range of less 
than 0.4 Hz, also extracted from PPG signals. 

Gait variables also derived using peaks from the peak 
detection algorithm. Each participant walked the same 60m 
total distance, wearing a smartwatch on the wrist. The number 
of peaks on the magnitude of the accelerometer is correlated 
with a step count. (Figure 4).  Walking duration is obtained 
from the time difference between the last step and the first step. 
The average gait speed is calculated by dividing the walking 
duration into the walking distance giving the result in meters 
per second. The average step time is the average time distance 
between accelerometer data magnitude peaks. 

C. Statistical Features 
Ten statistical characteristics of PPG and gait signals were 

also considered as possible predictors of classifying MCI 
against CH. The pulse oximeter provides a single axis of PPG 
signal, while the smartwatch provides three-axis accelerometer 
and gyroscope signals. We extracted statistical features from 
each axis of the sensor output independently for each 
measurement. 
• Average: Average of each measurement. 
• Standard Deviation: Standard Deviation of each 

measurement. 
• Max: The maximum value of each measurement. 
• Min: The minimum value of each measurement. 
• Range: The difference between the maximum and the 

minimum of each measurement. 
• Root mean square: The square root of the mean square of 

each measurement [23].  
• Crest factor: The squared crest factor, which is peak-to-

average power ratio (PAPR) of each measurement [23]. 
• Skewness: The symmetry of probability distribution of each 

measurement. The skewness of the perfectly symmetrical 
normal distribution is zero. A positively skewed result has a 
distribution with an elongated right tail, and a negatively 
skewed result has a left tail [28]. 

• Kurtosis: The peakedness and flatness of tail of probability 
distribution of each measurement [6]. A positive kurtosis 
represents lighter in the tail, but a negative kurtosis means 
thicker in the tail than the normal distribution [28]. 

• Variance: The variance of each measurement. 

 

Fig. 4   Magnitude of the accelerometer signal: (top) a noisy raw 
signal and (bottom) a signal after Butterworth filter with the peak 

detection. 
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D. Sliding Window 
Based on the successful gait recognition as an individual 

biometric by Johnston and Weiss et al. [29], a sliding window 
approach on our datasets discovers unique patterns or 
characteristics at the partition of time-series signal values. The 
PPG time-series sensor data were divided into 20-second non-
overlapping windows. Because the PPG data is sampled at 
75Hz, a 10-second window has 750 time-series values. The 
smartwatch sampled both accelerometer and gyroscope sensor 
data with inconsistence delays, so 50 time-series values of each 
signal were used for each window. Only the last 200 time-
series values of the gait signal were divided into partitions 
because of various noise sources at the beginning of 
measurement and when turning around at the end of the 
hallway. Each window with the time-series values was used to 
generate the same statistical feature extraction independently. 

IV. FEATURE SELECTION 

We combined the filter and wrapper method to have a better 
classification of MCI against CH (Figure 5). First, we pruned 
noisy and redundant features using four statistical criteria: T-
test, Mann-Whitney U test, χ2 test, and mutual information. 
The T-test helps to analyze the difference between the target 
group means. The Mann-Whitney U test is like the T-test but 
more reasonable to use when the distribution of the feature is 
not normal. The χ2 test measures the dependency between 
stochastic variables, while mutual information measures the 
dependency between two target variables [21]. Our null 
hypothesis is that extracted features from sensor data does not 
have any difference between MCI and CH groups. All these 
approaches are a type of statistical hypothesis testing to prove 
two numerical data samples significantly differ from one 
another by deviating the null hypothesis. The subset of each 
filter was slightly different from each other, and we combined 
all the subsets into one. In this way, we filtered the extracted 

features that significantly discriminate the MCI group from the 
CH group.  

The selected features were ranked by feature importance: 
Gini importance from the ensemble of the decision-tree (Extra 
Trees) for PPG dataset and coefficient in the logistic regression 
for the gait dataset. The Gini importance is calculated by total 
reduction of the Gini impurity brought by that feature [21]. 
Ranking the features in the subset can reduce the 
computational cost of the wrapper method by a constant. The 
wrapper method was used to obtain the optimal subset of the 
filtered features. Our proposed feature selection algorithm 
searches the possible subsets starting from the first feature on 
the ranked list and adding the next feature to create the next 
subset. The algorithm will move to the second feature and add 
the next feature to create a new subset, and so on. Each subset 
was evaluated by the cross-validation (CV) of the selected 
classifier. We selected the decision-tree classifier for the PPG 
dataset and the logistic regression classifier for the gait dataset. 
The algorithm stopped searching for other subsets when it 
reaches an arbitrary constant. We chose a constant as a one-
third of the length of the ranked list because only subsets 
which include the top feature importance achieves a better 
classification accuracy than when it is not including the top 
features. 

V. RESULTS AND DISCUSSION 

The feature subsets from each step of the proposed feature 
selection algorithm were validated by three learning models: 
logistic regression, Random Forest, and Extra Trees. The 
Random Forest model fits several decision-tree models on 
various sub-samples of the dataset, while the Extra Trees 
model consists of randomized decision-trees [21]. The 
classification accuracy of the feature subsets was compared 
with a classification accuracy when only the CVLT score was 
trained for the model. The CVLT score was the most 
significant feature of the classification and highly correlated 

 

Fig. 5   The proposed feature selection algorithm for MCI classification using sensor-derived features. 
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(p-value; 5.7´10-7) with a diagnosis of MCI. The CVLT 
measures verbal memory and conceptual ability, and this 
ability may be the main difference between MCI and CH 
recognition. The 5-fold CV result of each feature selection for 
PPG and gait dataset is shown in Table II. The classification 
accuracy using all features is as low as randomly picking one 
between two targets (Table II). This explains that some of the 
extracted features from both signals are noisy and redundant. 
The classification accuracy is improved using feature subset 
after the filter method of the proposed feature selection 
algorithm but still not better than using CVLT score alone 
(Table II). The optimal feature subset after the wrapper method 
provides the highest classification accuracy, 82% with the PPG 
dataset and 86% with the gait dataset, which is even better than 
using CVLT score alone (Table II). These results strongly 
verify the importance of optimal feature selection and that MCI 
classification accuracy can be improved when it uses sensor-
derived features with some neuropsychological test scores. 

The top-ranked features during the feature selection process 
can be considered as important markers from the PPG and gait 
signals for the MCI classification. Maximum PPG value during 
the cognitive task and MeanPP of initial PPG are the 
significant predictors. These markers imply the amplitude of 
PPG signals with mental stress and the intervals of PPG peaks 
are associated with the MCI group. Also, kurtosis and variance 
of PPG on the specific windows with mental stress are 
important markers of the MCI group. The average and 
skewness of the y-axis of the accelerometer signals before 
mental stress are ranked high among the gait features. These 
markers explain that the walking characteristics through the y-
axis of the accelerometer are different between the MCI and 
CH group.  

The classification accuracy of the randomly split test set for 
each dataset was evaluated. The PPG test dataset had a 0.93 
F1-score with the decision-tree model. The gait test dataset had 
a 0.55 F1-score with the logistic regression model, but a 0.72 
F1-score with the decision-tree model. We observed that the 
subset generated from the proposed feature selection algorithm 
is dependent on a specific classifier. The optimal feature subset 
of the PPG dataset was selected by the Extra Trees classifier, 
and the classification accuracy increased for the tree-based 
learning models (Table II). The feature subset of the gait 
dataset was iterated by the logistic regression classifier, and the 
maximum classification accuracy is presented on the same 
model. The proposed feature selection algorithm makes the 

optimal classifier stronger but has a risk of overfitting small 
datasets. The classification results from the test set explain that 
the decision-tree performs well for the wrapper method, but the 
logistic regression may cause an overfitting problem. Finding 
the better classifier for the wrapper method on the gait signals 
will be conducted as a future work. 

The proposed feature selection algorithm has reduced a 
computational intensity of the wrapper method through 
filtering the high dimensionality first and ranked the selected 
features by the importance. The feature subset search on the 
proposed feature selection algorithm needs O(n2) 
computational complexity, but the actual computational cost is 
reduced by dividing the constant value, which stops the subset 
search. 

VI. CONCLUSIONS 

In this pilot study, we proposed a novel application area of 
machine learning in the clinical diagnosis of MCI. We 
explored predictors from PPG, accelerometer, and gyroscope 
sensor data to predict MCI. We applied a simple peak detection 
and a sliding window approach to extract features from the 
sensor signals. We also demonstrated a new way of using the 
filter and wrapper methods to find optimal feature subset. We 
evaluated selected features by several classification algorithms. 
The classification accuracy using the optimal feature subset 
was higher than when only using a neuropsychological test 
score. Therefore, the sensor-derived predictions can support a 
diagnosis of MCI with neuropsychological tests.  

PPG, accelerometer, and gyroscope sensors are mostly 
available on commercial smartwatches. Other required 
information, such as simple neuropsychological assessments 
and demographics, can be served and collected through a 
mobile app. The current best way to prepare progressive 
dementia is the early detection of cognitive impairment. This 
application has a potential to be a reliable detection of MCI 
using easy-access mobile devices. It will produce social and 
economic benefits including diagnosing with concrete analysis, 
providing optimized treatments, decreasing healthcare cost, 
and reducing the burden on families, caregivers, and doctors. It 
will produce a positive impact on the geriatric population. 
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