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Abstract — In this paper, parallel multi-view low-rank sparse 
subspace clustering (MLRSSC) is investigated for unsupervised 
classification of remotely sensed hyperspectral imagery. A 3-
dimensional (3D) hyperspectral image contains abundant 
spectral and spatial information. Such diverse information can 
be considered as multiple views during the clustering process. In 
this paper, multiple spectral views are generated from correlated 
spectral band groups, a decorrelated and denoised view from 
principal components, and spatial views from morphological 
features. To make such a computational expensive clustering 
technique applicable to large-scale remote sensing images, 
parallel MLRSSC is implemented to non-overlapping 3D blocks. 
Experimental results demonstrate that the performance of the 
MLRSSC is better than other subspace clustering based 
algorithms. 

 

I. INTRODUCTION 

A hyperspectral remote sensing image contains hundreds 
of spectral bands for the same image scene on the Earth. Due 
to very high spectral resolution, hyperspectral imaging can be 
used to distinguish objects with subtle spectral discrepancies. 
Because of this special advantage, hyperspectral imaging has 
been widely applied in remote sensing monitoring [1-6]. 
Clustering is one of popular techniques in image processing, 
and also for hyperspectral image processing [7-9]. By 
considering both spectral and spatial information, a clustering 
algorithm separates spectral pixels into different clusters. As 
an unsupervised technique, clustering is more challenging 
than supervised classification using labeled samples. On the 
other hand, an unsupervised algorithm requires no label 
information that is often difficult or too expensive to obtain. 
Thus, unsupervised classification through clustering is of 
great interest to remote sensing applications.  

The k-means clustering is a classical method, which is 
sensitive to initial conditions and prone to be stuck in local 
optima. Furthermore, the clustering results are centroid-based, 
but a hyperspectral image may not have this nature due to its 
very high data dimension. Subspace clustering has been 
developed for high-dimensional dataset, where the data is 
clustered into multi-subspace and a low-dimensional subspace 

is achieved to fit each group of pixels. Recently, sparse 
subspace clustering (SSC) and low-rank subspace clustering 
(LSC) [10-12] are proposed to find affinity matrices for 
effective clustering, where an affinity matrix defines the 
similarity between pixels. The SSC algorithm uses the 
sparsest representation for each pixel with pixels in its group, 
and the local structure of data can be maintained. The LSC 
algorithm introduces low-rank constraint into self-
representation matrix, and the global structure of data is 
preserved. In order to contain both local and global 
information in dataset, the low-rank sparse subspace 
clustering (LRSSC) algorithm is proposed which combines 
the low-rank and sparsity constraints [13].  

In machine learning area, a dataset usually is acquired 
from multiple sources or contain different features, where 
multi-view learning technique has been deployed [14, 15], 
since traditional single-view learning could not represent all 
the features or sources properly in dataset. For a hyperspectral 
dataset, it can be treated as image with varied sources (e.g., 
spectral bands covering visible to shortwave infrared 
channels) or features (e.g., spatial and contextual information), 
where a multi-view learning algorithm could be applied. In 
this case, hyperspectral imagery is a perfect dataset for multi-
view learning. For instance, Li et al. utilized multiple 
morphological features for hyperspectral image classification 
[16].  

In particular, multi-view learning and LRSSC are 
incorporated in Ref. [17] as multi-view low-rank sparse 
subspace clustering (MLRSSC) to deal with multi-features or 
multi-sources in a dataset. We also apply the MLRSSC for 
hyperspectral image clustering where both spectral and spatial 
views are constructed [18]. Due to the very large spatial size 
of remote sensing data, subspace clustering type of algorithms 
are not directly applicable. In this paper, to maintain local 
spatial information, the parallel version of MLRSSC is 
applied to non-overlapping 3D blocks, and the final clustering 
result is produced by merging those of individual ones. Such a 
technique can be simply implemented in parallel machines to 
significantly reduce the overall computing time.  
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II. PROPOSED METHOD 

A. Low-rank sparse subspace clustering  

Let a hyperspectral image data with D spectral bands and 

N  pixels be denoted as 1[ , , , , ]i NX x x x  , where xi is 

the i-th pixel vector. The low-rank and sparse representation 
of X can be formulated as the following minimization 
problem:  

1,
min  ( ) ,   . .  rank s t  
Z E

Z E X AZ E             (1) 

where A is a dictionary, Z is the low-rank matrix, and E is a 
sparse error matrix.   

If A = X as in the low-rank subspace clustering problem 
for self representation, its optimization problem becomes: 

           min ,   . .  s t
Z

Z X = XZ                          (2) 

where the rank of Z is approximated by its nuclear norm.  
Rather than using low-rank representation where the 

whole data space is applied as representation space, the sparse 
subspace clustering searches a small number of atoms for 
representation, which may contain more local information in 
the dataset. Then the minimization problem can be expressed 
as: 

     
1

min ,   . .  ( ) 0s t diag 
Z

Z Z                       (4) 

where ( ) 0diag Z  is imposed to remove trivial solutions.  

According to [19-22], sparse representation contains major 
local structure information of dataset, while low-rank 
representation focuses on global structure information of the 
dataset. Thus, the low-rank sparse subspace clustering 
(LRSSC) proposed by [13] is to combine sparse and low-rank 
representations so as to handle both global and local structure 
information. The LRSSC can be formulated as 

1 2 1
min ,   . .  diag( ) 0s t 


 

Z
Z Z Z                (5) 

where 1  is low-rank and 2  is sparsity constraints. Then a 

symmetric affinity matrix W can be calculated as:  

                 T
 W Z Z                                   (6) 

Finally, the spectral clustering [23] can be applied to achieve 
clustering. 

B. Multi-view low-rank sparse subspace clustering  

Intuitively, multi-view learning could improve the 
performance of unsupervised classification or clustering, 
because multi-view learning could provide more information 
than single-view learning. For the MLRSSC, let a new 

dataset with t views be denoted as 1[ , , , , ]i tX X X X   , 

where the i-th view  
1

Ni i Di
j j

R


 X x containing 

iD dimension features are extracted from the original data X. 
Now the joint optimization problem with t  views can be 
formulated as 

 1 2

2

1 2 1, , ,
1 1 , ,

min ,
t

t
i i i j

F
i i j t t j

  


   

   
Z Z Z

Z Z Z Z


 

          . .  ,  ( ) 0i i i is t diag X X Z Z                        (7) 

where the regularization parameter of each view   should be 
different. However, for simplicity and practical usage, they 
are simply assumed identical. In addition to the low-rank and 
sparsity constraints, the third term in Eq. (7) encourages the 
representations from different views to be consistent if 
possible.  

The alternating direction method of multipliers (ADMM) 
can be applied to solve this convex optimization problem in 
Eq. (7). Finally, spectral clustering is applied to the affinity 
matrix W which is also generated according to Eq. (6) using 
the Z from Eq. (7). 

C. Parallel Multi-view low-rank sparse subspace clustering 
for Hyperspectral Images 

Due to high spatial and spectral correlations in 
hyperspectral images, both spatial and spectral information 
should be considered. Accordingly, spatial and spectral views 
can be constructed. Specifically, in this research, spectral 
partitioning based on correlation coefficients is applied to 
generate multiple spectral views, and highly correlated 
spectral groups are considered as a type of views. Principal 
component analysis (PCA) is deployed to remove spectral 
correlation and eliminate noise, and the principal components 
are considered as a view. As for spatial views, we used 
morphological features which are extracted from the first 
principal component (PC), and the coarse, fine, high-contrast, 
low-contrast, horizontal and vertical features are used to form 
a matrix as another view. Then the MLRSSC algorithm can 

be applied to the constructed multi-view dataset X [18].  
Due to very high computational cost, the subspace 

learning type of clustering cannot process large-scale images. 
Thus, we propose to partition an original image into non-
overlapping blocks, and apply the MLRSSC algorithm to each 
block. The final clustering result can be generated by merging 
the results from each block through comparing spectral 
similarity of mean vectors. It is worth mentioning that to 
solve the similar computational problem of image clustering, 
a uniform data sampling technique is used in [12], where a 
pixel is chosen from an M × M local window, resulting in M 2 
subimages. However, this technique is inapplicable here, 
because local spatial information needs to be preserved for 
multi-view clustering. 
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III. EXPERIMENT 
 
The SalinasA dataset is acquired by the Airborne Visible 

and Infrared Imaging Spectrometer (AVIRIS) sensor over the 
Valley of Salinas, Central Coast of California, in 1998, where 
spatial resolution is 3.7m with 204 spectral bands. The false-
color image of SalinasA and block partitioning are shown in 
Fig. 1. This image scene is about agricultural fields with 16 
classes in total.  

For spectral partitioning, the threshold of correlation 
coefficient is chosen as 0.8 according to Fig. 2, resulting in 29 
spectral groups. This means there are 29 views based on the 
spectral features in the following processing. 

Fig. 3 shows the clustering results with different number 
of PCs. When only PCs are used (as shown in blue bar in Fig. 
3), the accuracy is improved with the number of PCs being 
increased to 10, and then the accuracy becomes almost stable. 
The accuracy reaches the maximum around using 50 PCs, 
which is about 85%. This means the major information in the 
original data are contained in the first 10 PCs. When spectral 
partitions are jointly used with PCs (orange bar in Fig.3), 
there is significant improvement in classification accuracy, 
where the highest accuracy can be as high as 94% with 50 
PCs views and 29 spectral partition views. When spatial 
views are added, the accuracy can be further improved. Note 
that using 100 PCs cannot improve the accuracy, because 
minor PCs may contain noise only without discriminant 
information for class separation. 

 

 

 
Fig. 1. The block partitioning of SalinasA cube, and classes and 
labeled pixels in each block. 

 

Table I compares several subspace clustering methods 
with the MLRSSC, which include SSC, LRSSC, MLRSSC 
with PCs only, MLRSSC with spectral partitions only, and 
MLRSSC with morphological features only. According to the 
results, MLRSSC with all views can provide the best 
performance, yielding the accuracy as high as 88%. The 
classical SSC and LRSSC produce less accurate results, 
which are 82% and 84% respectively. The MLRSSC with 
spectral partition views and the MLRSSC with PC views offer 
lower accuracy than the MLRSSC with all views. In particular, 
the performance of MLRSSC with morphological features 
only is the worst, which may indicate that spectral 
information is more important than spatial information in this 
hyperspectral image classification problem. 

 
Fig. 2  clustering accuracy with different correlation coefficient 
threshold.  
 

 

Fig. 3  The clustering accuracy with varied views in the SalinasA 
experiment.  

 
TABLE I 

ACCURACY OF CLUSTERING IN EACH BLOCK OF SALINASA DATASET WITH 

VARIED ALGORITHMS 

BLOCK SSC LRSSC 
MLRSSC 

(PCA) 

MLRSSC 
(SPECTRAL 
PARTITION) 

MLRSSC 
(MORPHO

LOGY) 

MLRSSC 
(ALL) 

(1*1) 0.934 0.960 0.976 0.960 0.666 0.950 

(1*2) 0.929 0.914 0.831 0.894 0.655 0.941 

(2*1) 0.694 0.731 0.851 0.713 0.742 0.757 

(2*2) 0.719 0.768 0.565 0.739 0.631 0.874 

OA 0.819 0.843 0.806 0.826 0.673 0.881 
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IV. CONCLUSIONS 
 
In this paper, parallel MLRSSC is applied to hyperspectral 

image clustering, which makes the computational expensive 
MLRSSC feasible to large-scale remote sensing images. The 
multiple views are extracted by spectral partitioning, 
morphological filtering, and PCA. The MLRSSC can 
outperform other single-view subspace clustering methods, 
such as SSC, LRSSC.  
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