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Abstract—We propose to build a time delay neural network 

based, Mandarin and Uyghur, bilingual TTS system. To 

facilitate the phone sharing across the two languages, we design 

multilingual question set, which includes language specific, 

language independent and IPA sharing questions. Neural 

network based language discriminative approach is also used to 

get better network output during mix-training. Language 

discriminative information is augmented as auxiliary feature to 

linguistic features at input level and control the output of a feed-

forward deep neural network at the output layer. Preliminary 

experimental results show that the multilingual mix-synthesis 

models can be constructed using the proposed language 

discriminative training architecture. Monolingual and 

multilingual system performance are evaluated and compared 

for both languages, language discriminative codes also show to 

be efficient to distinguish the contextual linguistic features from 

different languages and can help to control the output features. 

Index Terms— Speech synthesis, multilingual, time delay neural 

network (TDNN), phone sharing, data augmentation 

I. INTRODUCTION 

Most Text to Speech (TTS) systems today assume that the 

input is in a single language written script. However, due to 

the growing influence between different languages, we now 

see code-mixing in text becoming more common in bilingual 

and multilingual communities. Therefore, a multilingual TTS 

system, in which one engine can synthesize multiple 

languages or even mixed-languages, is in a great demand with 

the rapid improvements of TTS technologies. 

Hidden Markov model (HMM) based speech synthesis has 

dominated SPSS in the past decades, due to high effectiveness 

to model the evolution of speech signals as a stochastic 

sequence of acoustic feature vectors and can obtain a high 

quality acoustic model using even a relatively small size 

corpus [1]. HMM-based bilingual TTS system has been 

proposed for English-Mandarin code switched TTS [2]. This 

approach uses speech databases in both languages from the 

same speaker and a single TTS system that shares phonetic 

space is built. With shared phones, the system has a smaller 

footprint and synthesis quality much better for mixed-

language synthesis. 

However, the naturalness of synthetic speech rendered 

through HMM-based synthesis system is not as good as that 

of the best samples from unit-selection speech synthesizers. 

This is mainly caused by three factors: quality of vocoder, 

accuracy of acoustic model, and effect of over-smoothing. To 

get the high accuracy of training model, the use of deep neural 

networks (DNNs) has been proposed. Several independent 

studies have demonstrated that DNNs can produce more 

natural synthesized speech than the conventional HMM-based 

speech synthesis in various training conditions [3-10]. One 

reason for the success of DNNs compared to HMMs is that 

they can provide a better and more efficient representation of 

complex dependencies between linguistic and acoustic 

features. To model the sequential nature of speech, the DNNs 

are extended to recurrent neural networks, especially long 

short-term memory networks (LSTMs), which capture the 

correlations among consecutive frames [10-12]. Study in [13] 

have proposed a multilingual BLSTM based speech synthesis 

system that shares hidden layers across different languages. 

The DNN-based speaker adaptation also outperformed the 

HMM-based systems in terms of naturalness and speaker 

similarity[14]. Several studies have also explored DNNs for 

speaker adaptation in TTS [14-19]. In DNNs, the adaptation 

techniques have been applied at three different levels of input 

[14, 15, 17, 18, 19, 20], model [14, 16, 20], and output [14, 15, 

20]. DNN-based speaking style adaptation of Lombard speech 

has been proposed and also confirmed that the DNNs are able 

to adapt better to the Lombard style than HMMs [20]. 

However, there are no previous studies on language 

discrimination controlling in DNN-based multilingual or mix-

synthesis. 

In this work, we investigate a TDNN-based Mandarin and 

Uyghur bilingual TTS system. To the best of our knowledge, 

it is the first attempt for neural network based speech 

synthesis and mix-synthesis for Uyghur language. We design 

language specific, language independent and IPA sharing 

questions, to facilitate phone sharing across the two languages 

in mix-TTS. To get the better network output in mix-training, 

we also consider neural network based adaptation and 

controlling methods. We augment the language discriminative 

information as auxiliary features to linguistic features at input 

level and output level. The augmented information enables 

the network to distinguish the contextual linguistic features 

from different languages at the input layer, and constrain the 

output features of different languages at the output layer. As 

these controlling techniques are performed at different levels, 

they may be usefully combined. We have performed 

experimental analysis on the performance of each individual 

discriminative training and that of their combinations. 

II. FEATURE DESIGNING 

For building a mix-synthesis system, the most important 

steps of data preparation are deciding a phone set to cover all 
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speech sounds in different languages, designing multilingual 

question set and creating input training data. Additionally, we 

also hope such a phone and question set can be compact 

enough to facilitate phone sharing across languages and make 

a reasonable sized training model.  

The phone set we used is the union of all phones in 

Mandarin and Uyghur, contains 48 and 42 phones 

respectively. The questions set that we designed for 

multilingual synthesis include: 

a) Language specific question: e.g. Does the tone of current 

phone is 0?, since there is no tone in Uyghur, that kind of 

question only specific for Mandarin. For Uyghur e.g. Does the 

current phone belongs to vowel, which contain /a/, /æ/, /e/, /i/, 

/o/, /u/, /ø/, /y/, 8 vowels in Uyghur.  

b) Language independent question: mainly includes 

numeric values (e.g. the number of words in the phrase, the 

relative position of the current frame in the current phoneme) 

and silence pattern (e.g. is current silence pau?) 

c) Phone sharing IPA question: to facilitate the phone 

sharing between two different languages, we explore the 

sharing IPA between them and designing a set of IPA sharing 

questions. 

IPA (International Phonetic Alphabet) is an international 

standard to transcribe speech sounds in any spoken language. 

It classifies phonemes according to their phonetic-articulatory 

features. Phonemes of different languages labeled by the same 

IPA symbol should be considered as the same phoneme by 

ignoring the language-dependent aspects of speech perception. 

We found twelve consonants /p/, /m/, /f/, /t/, /n/, /l/, /k/, /ŋ/, 

/x/, /s/, /j/, /w/, and six vowels (ignoring the tone information) 

/a/, /e/, /o/, /i/, /u/, /y/, can be shared between the two 

languages according to their IPA symbols. The sizes of 

different type of questions are listed in table 1. 

Table.1 size of multilingual mix question set 

Question type language size 

Language specific 
Mandarin 319 

Uyghur 233 

Language independent common 22 

IPA sharing question common 110 

total 684 

III. MULTILINGUAL MIX-SYNTHESIS ARCHITECTURE 

In DNN-based monolingual speech synthesis, the input 

linguistic features and the corresponding output acoustic 

features from one single language, different languages have 

their different linguistic contextual information. Thus, the 

input and output layers are language dependent.  

In multilingual speech synthesis, though the input and 

output layer of DNN are language dependent, but the hidden 

layers can be considered as language independent, which 

transforms the input of linguistic features to an internal 

language independent representation, and the internal 

representation can be shared across different languages. 

Because each language has its unique linguistic features, 

different languages may correspond to different dimensional 

input features, which include binary answers to questions 

about linguistic contexts and numeric values, etc. The single 

uniform representation of input features from different 

languages has obtained by using multilingual question set 

designed in section 2. Dimension of the uniform input 

features equals to the sum of the input feature dimensions of 

different language, when the current input features are from 

language 1, the uniform input features are constructed by 

concatenating the input features from language 1 with 

appending all zeros (representations of language specific 

questions from language 2) and vice versa, as shown in lower 

part of fig 1. Then, mix model accepts uniform input features, 

the hidden layers of model are perceived as feature 

transformations and can be shared across different languages. 

The output layers then use the commonly internal 

representations to predict the acoustic features of different 

languages. 

Joint training with multiple languages may increase the 

perplexity of the model. In order to help the network learning 

more about language variation during training and to get more 

language discriminative output features from network, we 

augment language specific information as auxiliary features to 

the input and output features during the model training.  

IV. LANGUAGE DISCRIMINATIVE TDNN TRAINING 

In the process of training, we use TDNN (time delay neural 

network) architecture for both duration and acoustic model 

training. TDNN has been shown to be effective in modeling 

long range temporal dependencies [21], and uses a modular 

and incremental design to create larger networks from sub-

components [22]. TDNN architecture which models long term 

temporal dependencies with training times comparable to 

standard feed-forward DNNs and uses sub-sampling to reduce 

computation during training also shows the effectiveness in 

learning wider temporal dependencies in both small and large 

data scenarios on LVCSR tasks [23] and get better results 

than recurrent neural network. Splicing increasingly wide 

asymmetric context as the layer rise architecture is used in our 

system according to different time splicing experiment and 

experience from [23]. We splice frames of offsets [-2, 2], {0}, 

{-1, 2}, {-3, 4}, {-7, 2}, {0} at six hidden layers of duration 

model and offsets of [-2, 2], {-1, 2}, {-3, 4}, {0} at four 

hidden layers of acoustic model training. Fig 1 shows the 

TDNN acoustic model training architecture used in this paper. 

The use of augmented or auxiliary features is an widely 

used approach in speaker adaptive neural network architecture 

in which the linguistic features are augmented with additional 

speaker-specific features computed for each speaker at both 

training and test stages. Studies in [14,15,17] have 

successfully used the auxiliary information such as gender, 

speaker identity, age or i-vector for speaker adaptation in 

DNN-based speech recognition and synthesis. In this work, 

we augment the language specific information as auxiliary 

features to linguistic features at input level. We use one-hot 

vector codes for auxiliary features. If there are N languages in 
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the training set, the standard one-hot vector language 

discrimination code for the i th language can be defined as: 
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The augmented values enable distinguishing the contextual 

linguistic features from different languages. Besides, we also 

experiment to constrain the output features with language 

discrimination code and combination both of input and output 

layer. 
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Fig.1 TDNN training architecture in multilingual mix-synthesis 

V. EXPERIMENTS 

A. Experimental setup 

In training the multilingual TTS, the 1898 sentence speech 

utterances were used as training set, including 948 Mandarin 

and 950 Uyghur. 10% of training data was used as 

development set and 50 utterances were used as evaluation set. 

All speech data are recorded as newspaper reading style by 

different native female speaker for each language with 

sampling rate of 16 kHz.  

The full contextual labels were generated from the text files, 

which were available along with speech, using the text 

analysis process of different languages. As for the linguistic 

features, the contextual labels include quin-phone following 

with position and length related features of phone, syllable, 

word, phrase, sub-sentence and sentence. Besides, contextual 

labels of Mandarin include tone of the syllable, prosody and 

part-of-speech features. The part-of-speech and prosody 

related features for Uyghur were not ready in time for this 

paper, owing to there are not enough labeling data for them 

now. 

The overall multilingual synthesis system was done with 

the Kaldi toolkit [24]. We trained two TDNN model for 

duration and acoustic features separately. For duration 

modeling, the input comprises binary features derived from a 

subset of the multilingual questions set designed in section 2, 

with 684 dimension in total. Frame-aligned data for TDNN 

training was created by forced alignment using the HMM 

system. The output is durations for every phone. 6 hidden 

layers of Relu activation function with 1024 nodes were used. 

L2 regularization was applied to the weights with penalty 

factor of 1e-3, exponential decay learning rate was applied 

with initial value 0.02, the mini-batch size was 256, and 

momentum was 0.2. 

For acoustic modeling, the input uses the same features as 

duration prediction, to which 4 numerical features are 

appended to provide information about the position and 

durations of frame within the phoneme. In total, the input 

feature vector was 688 in dimension. The output of acoustic 

features comprise 60-D MGCs (Mel Generalization 

Cepstrum), 1-D BAPs (Band Aperiodicity), 1-D F0 and their 

corresponding delta and delta-delta features. The F0 was 

linearly interpolated and an extra V/UV feature was added to 

acquire the voice/unvoiced information at runtime synthesis. 

Thus, in total, the output feature was 187 dimensional. The 

acoustic model consists of 4 hidden layers with 1024 hidden 

units using Relu as activation function in each layer. L2 

regularization was applied to the weights with penalty factor 

of 1e-2, exponential decay learning rate was applied with 

initial value 0.0015, the mini-batch size was 256, and 

momentum was 0.2. 

In acoustic and duration model, the input features were 

normalized to the range of [0.1, 0.99] by using the min-max 

normalization and the output features were normalized to zero 

mean and unit variance. The development and evaluation set 

were normalized by the values derived from the training data.  

At synthesis time, duration is predicted first, and is used as 

an input to the acoustic model to predict the speech 

parameters. To generate smooth parameter trajectories, the 

maximum likelihood parameter generation (MLPG) algorithm 

was applied on predicted acoustic parameters using the global 

variances of training data, and spectral enhancement 

postfiltering is applied to the resulting MGC trajectories. 

Finally, the WORLD [25] vocoder is used to synthesize the 

waveform. 

B. Objective evaluation 

To evaluate the performance of our system, we conducted a 

set of objective evaluations on the 50 utterances from the 

different languages test set. While the objective metrics do not 

map directly to perceptual quality, they are often useful for 

system tuning. The mel-cepstral distortion (MCD), band 

aperiodicity distortion (BAP), voiced/unvoiced prediction 

error (VUV), root mean squared error (RMSE) and Pearson 

correlation were computed between predicted and original 

acoustic parameters of the entire evaluation set.  

First, we investigated the performance of monolingual TTS 

for Uyghur language, since this is the first attempt for neural 

network based Uyghur TTS. For  monolingual Uyghur speech 

synthesis, we conducted two different kinds of model training 

architecture experiments, including TDNN and BLSTM. All 

the model parameters for both approaches are the same as 

described in section A. In BLSTM, we used Merlin 
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toolkit[12], with configuration of five feedforward hidden 

layers of 1024 hyperbolic tangent units each, followed by a 

single BLSTM layer with 512 units for duration model. For 

acoustic model, we configure three feedforward hidden layers 

of 1024 hyperbolic tangent units each, followed by a single 

BLSTM layer with 512 units. Results are presented in Table 2. 

TDNN based training architecture get slight better 

performance in our experiment under our experimental 

condition. 

Table.2 Experimental results of monolingual Uyghur TTS 

Method MCD(dB) BAP(dB) F0-RMSE(Hz) CORR VUV(%) 

TDNN 7.504 0.285 17.651 0.686 10.887 

BLSTM 7.709 0.302 18.660 0.649 11.220 

Second, we investigated the performance of our proposed 

multilingual mix-synthesis for different languages and 

language discriminative training approaches at the different 

layers. Our baseline system is the mix-training of two 

languages without any discrimination approach. We added the 

language discriminative code to output and input layer 

separately, and also added to both of them at the same time. 

Performance of multilingual mix-synthesis for Uyghur test 

utterances presented in table 3 and for Mandarin in table 4. It 

can be seen from the table that all the discriminative training 

in different layers get the better performance than the baseline 

system, and adding language discriminative code to both 

input and output layer get the best result in both multilingual 

experiment. It also can be seen that language discrimination in 

input layer is more efficient than output controlling. As for 

Mandarin test in table 4, we also give the TDNN based 

monolingual Mandarin synthesis results for comparison. 

Table.3 Results of multilingual TTS for the Uyghur test utterances 

Method MCD(dB) BAP(dB) 
F0-

RMSE(Hz) 
CORR VUV(%) 

baseline 8.070 0.314 19.629 0.606 11.979 

Output 8.057 0.314 19.426 0.610 11.779 

Input 7.634 0.291 18.356 0.653 11.182 

Combination 7.635 0.292 18.336 0.653 11.090 

Table.4 Results of multilingual TTS for the Mandarin test utterances 

Method MCD(dB) BAP(dB) 
F0-

RMSE(Hz) 
CORR VUV(%) 

monolingual 5.077 0.259 35.224 0.822 5.930 

baseline 5.936 0.277 37.189 0.802 6.984 

Output 5.927 0.276 37.243 0.804 6.931 

Input 5.829 0.265 35.356 0.819 6.209 

Combination 5.825 0.263 35.485 0.819 6.251 

It has to be noticed that, in all monolingual and 

multilingual synthesis results in table 4, the F0-RMSE of 

Mandarin are significantly high. It also indicates that the 

differences between the tone and no-tone language. The f0 

fluctuation of Mandarin utterances is significantly higher than 

Uyghur, this may be one of the main reason that affects the 

multilingual mix-synthesis performance. The f0 trajectory 

differences between two languages are also clearly shown in 

Fig 3 and Fig 4, which include f0 trajectory of original and 

utterances synthesized by the monolingual and multilingual 

combination approach. Other evaluation metrics including 

MCD, BAP and VUV are lower than Uyghur test, due to 

Mandarin training data have rich contextual features such as 

prosody and part-of-speech than Uyghur. 

 

Fig.3 F0 trajectory for held-out Uyghur utterances: “he came here for a trip” 

 

 

Fig.4 F0 trajectory for held-out Mandarin utterances: “It's like being in the 

arms of the earth” 

C. Subjective evaluation 

We conducted listening tests to assess the naturalness of the 

synthesized speech obtained from different training 

architecture. Two MUSHRA (Multiple Stimuli with Hidden 

Reference and Anchor) tests [26] were conducted to assess 

the naturalness of Mandarin and Uyghur synthesis utterances. 

20 native listeners participated in each test. Each listener rated 

15 sets which were randomly selected from the testing 

utterances. For Mandarin listening test, each set consisted of 5 

stimuli of the same sentence generated by each of the four 

multilingual systems and one monolingual system plus the 

copy-synthesis speech used as the hidden reference. For 

Uyghur utterance listening test, there is one more stimuli for 

BLSTM. The listeners were asked to rate each stimulus from 

0 (extremely bad for naturalness) to 100 (same naturalness as 

the reference speech). 

The MUSHRA scores for all the Mandarin and Uyghur 

synthesis utterances are presented in Fig. 5 and Fig.6. In both 

two listening test, all the results of different approach are 

almost the same trend with objective test. The difference 

between input layer discrimination and combination approach 

is not significant and gets the better performance than other 

systems within multilingual synthesis. It also can be clearly 

shown from the figure that, mix-synthesis quality gradually 

increases with the discrimination approaches of different layer, 

and combination approach is very close to non-mixed. From 
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that point of view we can see that more efficient language 

discrimination code is very essential in our task, actually we 

also investigate the language vector learning approaches, but 

not ready in time for this paper. Lack of data, language and 

speaker differences are the greatest difficult for further 

enhancing the performance of our mix-synthesis. 

 

Fig.5 Box plot of MUSHRA results for Uyghur synthesis utterances 

 

 

Fig.6 Box plot of MUSHRA results for Mandarin synthesis utterances 

VI. CONCLUSIONS 

In this paper, a systematic experimental analysis was 

conducted on multilingual mix-synthesis for Mandarin and 

Uyghur language. To facilitate the phone sharing between two 

languages, we design multilingual mix-question set and 

investigate the IPA sharing between them. A TDNN based 

training architecture is used for duration and acoustic model 

training. In order to help the network to learn more about 

language variation and to get more language discriminative 

output features, a language discriminative training approach is 

used and the experimental results of adding language 

constraint codes to different layer are compared. The 

preliminary experimental results show that multilingual mix-

synthesis quality is very close to non-mixed. In the future, we 

would like to investigate more complicated models, such as 

multitask training architecture, and also like to investigate 

more efficient language sharing and language discriminative 

code learning architecture for further enhancing the 

performance of the system. 
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