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Abstract—Information Theoretic Learning (ITL) [1][2] is gain-
ing popularity for designing adaptive filters for a non-stationary
or non-Gaussian environment. ITL cost functions such as the
Minimum Error Entropy (MEE) have been applied to both linear
and nonlinear adaptive filtering with better overall performance
compared with the typical minimum mean squared error (MSE)
and least-squares type adaptive filtering [3][4] especially for non-
linear systems and in higher-order statistic noise environments.
In this paper, we develop a kernel adaptive filter for quaternion
data based on normalized minimum error entropy cost function.
We apply generalized Hamilton-real (GHR) calculus that is
applicable to Hilbert space for evaluating the cost function
gradient to develop the quaternion kernel normalized minimum
error entropy (QKNMEE) algorithm. The new proposed algo-
rithm enhanced MEE algorithm where the filter update stepsize
selection will be independent of the input power and the kernel
size.

I. INTRODUCTION

Quaternion valued data processing is beneficial in ap-
plications such as robotics and image processing, particu-
larly for performing transformations in 3-dimensional space
[5][6][7][13]. In particular, the benefit for quaternion valued
processing includes performing data transformations in a 3
or 4-dimensional space in a more convenient fashion than
using vector algebra. Transformations are performed using
quaternion addition and multiplication, which differs from
real or complex multiplication in that the operation is non-
commutative. Applications such as pattern recognition in im-
ages and the modeling and tracking of motion are considerably
simplified using quaternions [6]. Recently, [7], we applied
generalized Hamilton-real (GHR) calculus that is applicable to
Hilbert space [20] for evaluating the cost function gradient to
develop the quaternion kernel minimum error entropy (MEE)
algorithm. The MEE algorithm minimizes Renyis quadratic
entropy of the error between the filter output and desired
response or indirectly maximizing the error information poten-
tial. The approach improved performance for biased or non-
Gaussian signals compared with the minimum mean square
error criterion. While this algorithm converges quickly and has
a lower misadjustment, the tracking behavior and performance
has not been analyzed.

One of the main drawbacks of the MEE algorithm is its
strong dependency on the kernel size σ and on the input signal
power. In order to avoid these problems Han et al [4], [8]
proposed an MEE based normalized algorithm, the normalized

minimum error entropy (NMEE). Diniz et al addreses some of
the issues from the previous works and derived a new version
for the linear-in-parameter NMEE algorithm which its solution
is equivalent to the privious works.

In this paper, we develop a kernel adaptive filter for
quaternion data based on normalized minimum error entropy
(NMEE) cost function. We explore alternative NMEE cost
functions [8][14] and compare the transient, steady-state and
tracking performance of the resulting algorithms with previous
ones. We also present a theoretical performance analysis of the
resulting algorithms and verify the transient and steady-state
performance via simulations.

This paper is organized as follow: section 2 covers the back-
ground material, section 3 contains the algorithm derivation,
section 4 convergence analysis, section 5 is simulation results
and section 6 concludes the paper.

II. BACKGROUND

A. Quaternions and Properties

Quaternions are a 4-D associative, non-commutative,
normed division algebra over the real numbers.The details
about quaternions and the GHR calculus can be seen in
[15][16] and [17]. Some properties of the left GHR derivatives
are as follows:

Product rule:
∂(fg)

∂qµ
= f

∂g

∂qµ
+

∂f

∂qgµ
g (1)

Product rule:
∂(fg)

∂qµ∗
= f

∂g

∂qµ∗
+

∂f

∂qgµ∗
g (2)

Chain rule:
∂(f(g(q)))

∂qµ
=

∑
v∈{1,i,j,k}

∂f

∂gv
∂gv

∂qµ
(3)

Chain rule:
∂(f(g(q)))

∂qµ∗
=

∑
v∈{1,i,j,k}

∂f

∂gv∗
∂gv∗

∂qµ∗
(4)

Rotation rule:
( ∂f
∂qµ

)v
=

∂fv

∂qvµ
,
( ∂f

∂qµ∗

)v
=

∂fv

∂qvµ∗
(5)
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Conjugate rule:
( ∂f
∂qµ

)∗
=
∂rf
∗

∂qµ∗
,
( ∂f

∂qµ∗

)∗
=
∂rf
∗

∂qµ
(6)

If f is real then:
( ∂f
∂qµ

)∗
=

∂f

∂qµ∗
,
( ∂f

∂qµ∗

)∗
=

∂f

∂qµ
(7)

B. Renyi Entropy and Parzen Window

Renyi’s entropy definition such as the order–α Renyi’s
entropy is defined as [18]

Hα(e) =
1

1− α
log

∫ ∞
−∞

pαe (e)de (8)

where α ∈ R+\{1} and pe is probability distribution function
of random variable e.
We can define order–α information potential Vα as

Vα(e) =

∫ ∞
−∞

pαe (e)de =‖pe‖αα (9)

where ‖.‖α is standard norm–α in Lα.
In practice the entropy function is not accessible since it is a
function of the pdf of relative random variable e. With α = 2
the entropy can be estimated by using some specific method
such as the Parzen window which is a good estimation of the
order–2 Renyi’s entropy function.

For a set of N statistically independent random samples
{ei}Ni=1 of random variable e, the Parzen window computes
the estimate of the probability distribution function pe as

p̂e(e) =
1

Nσ

N∑
l=1

K(
e− el
σ

) =
1

N

N∑
l=1

G√2σ(e− el) (10)

where K is the real value Gaussian Kernel and σ is the size
of kernel and G√2σ is defined as the following function

G√2σ(e− el) =
1√
2πσ

exp{− (e− el)2

2σ2
} (11)

The estimation of information potential V̂ (e) is given by

V̂ (e) =
1

N2

N∑
l1=1

N∑
l2=1

G√2σ(el1 − el2) (12)

The global solution of maximization of the V (e) is the same
as global solution of V̂ (e), and with the Parzen window
estimation, the global solution is achieved when all related
errors are constant , i.e., e1 = e2 = = eN and the maximum
value of V (e) is shown by V (0) or equally V̂ (0) = 1√

2σ
.

III. QUATERNION NORMALIZED MINIMUM ERROR
ENTROPY ALGORITHM

In our previous work [7], we developed quaternion kernel
adaptive filter based on minimum error entropy (QKMEE)
with quaternion data. The goal was to maximize the informa-
tion potential of the error signal. The filter could be expressed
as yn = < Φ(un) ,wn > , which also can be written as:

yn = wH
n ϕn (13)

where both the element wn and ϕn lie on a a Quaternion
Reproducing Kernel Hilbert Space (QRKHS) H with inner
product < , > , and ϕn= Φ(un) which Φ(.) is the kernel map
to a QRKHS [5].

The Normalized Minimum Error Entropy Algorithm pro-
posed in [8] was based on the real number domain R . In
this case, we use the same method to develop Quaternion
Normalized Minimum Error Entropy Algorithm (QKNMEE).
The proposed parameter to be estimated in quaternion domain
may be described as follow :

min
∀wn+1∈H

‖wn+1 −wn‖22

s.t. ε(n)− ε(l) = 0

∀l ∈ {n−N, ...n− 1}

(14)

where H is a quaternion RKHS and and ε(n− l) =
d(n− l) −wH

n+1ϕn−l as posteriori errors for ∀l : 1 ≤ l ≤
N .

The above constrained minimization problem (14) could
be converted to the following unconstrained minimization
problem with cost function J(n) using quaternion Lagrange
multipliers λn−l ∈ H for ∀l : 1 ≤ l ≤ N :

J(n) = (wn+1−wn)H(wn+1−wn)+
N∑
l=1

λn−l(ε(n)−ε(n−l))

(15)
The minimum of J(n) is reached when the gradient of J(n)
with respect to wn+1 is zero. The gradient of cost function
J(n) can be calculated in quaternion domain using GHR
calculus as follow

∇w∗
n+1

J(n) =

(
∂J(n)

∂wn+1

)H
=

(
∂(w −wn)H(w −wn)

∂wn+1

)H
+

(
∂
∑N
l=1 λn−l(ε(n)− ε(n− l))

∂wn+1

)H (16)
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where

∂J(n)

∂wn+1
=

=
∂(wH

n+1wn+1)

∂wn+1
−
∂(wH

n+1wn)

∂wn+1

− ∂(wH
n wn+1)

∂wn+1
+
∂(wH

n wn)

∂wn+1

+
N∑
l=1

λn−l
∂(ε(n)− ε(n− l))

∂wn+1

(17)

then using product rule (1) of GHR calculus the gradient
can be calculated as:

∂J(n)

∂wn+1
=

wH
n+1

∂wn+1

∂wn+1
+

∂wH
n+1

∂w
wn+1

n+1

wn+1

−wH
n+1

∂wn

∂wn+1
−
∂wH

n+1

∂wwn
n+1

wn

−wH
n

∂wn+1

∂wn+1
− ∂wH

n

∂w
wn+1

n+1

wn+1

+ wH
n

∂wn

∂wn+1
+

∂wH
n

∂wwn
n

wn

+
N∑
l=1

λn−l(
1

2
ϕHn −

1

2
ϕHn−l)

(18)

Using GHR calculus and derivatives properties the gradient
can be simplified as:

∂J(n)

∂wn+1

=
1

2
wH
n+1 −

1

2
wH
n

+
N∑
l=1

λn−l(
1

2
ϕHn −

1

2
ϕHn−l)

(19)

therefore, by setting ∂J(n)
∂wn+1

= 0 , the filter weight update can
be calculated as :

wH
n+1 =wH

n −
N∑
l=1

λn−l(ϕ
H
n − ϕHn−l)

= wH
n − ΛΨd(n)H

(20)

where Ψd(n) = [ϕn − ϕn−1, ..., ϕn − ϕn−N ] ∈ H1×N which
H is a quaternion RKHS and Λ = [λn−1, ..., λn−N ] ∈ H1×N

for N quaternion Lagrange multipliers.

The N Lagrange multipliers may be computed by the
N constraint equations ε(n+ 1, n) = ε(n+ 1, k) for ∀k ∈
{n − N, ...n − 1} using N previous posterior errors defined
as ε(n, k) = d(k)−wH

n ϕk. Therefore ∀k ∈ {n−N, ...n− 1}

d(n)−wH
n+1ϕn = d(k)−wH

n+1ϕk (21)

By substituting (20) in (21), we have

d(n)−
(
wH
n −

N∑
l=1

λn−l(ϕ
H
n − ϕHn−l)

)
ϕn

= d(k)−
(
wH
n −

N∑
l=1

λn−l(ϕ
H
n − ϕHn−l)

)
ϕk

(22)

By using distributive property of quaternion RKHS, equa-
tion (22) can be expressed as:

d(n)−wH
n ϕn −

N∑
l=1

λn−l(ϕ
H
n − ϕHn−l)ϕn

= d(k)−wH
n ϕk −

N∑
l=1

λn−l(ϕ
H
n − ϕHn−l)ϕk

(23)

By substituting the posterior errors and changing the order
in equation (23), it can be simplified to:

e(n)− ε(n, k) = −
N∑
l=1

λn−l(ϕ
H
n − ϕHn−l)(ϕn − ϕk)

= −ΛΨd(n)H(ϕn − ϕk)

(24)

Now, we define εd = [e(n)− ε(n, n− 1), ..., e(n)− ε(n, n−
N)] ∈ H1×N , and rewrite N distinct delta error equations in
matrix form as:

εd = −ΛΨd(n)HΨd(n) (25)

therefore the N quaternion Lagrange multipliers can be cal-
culated as

Λ = −εd
(
Ψd(n)HΨd(n)

)−1 (26)

where it is assumed that Ψd(n)HΨd(n) ∈ HN×N is non-
singular and H is quaternion RKHS. By substituting Λ in
equation (20) we can simplify filter weight update recursion
formula as:

wH
n+1 = wH

n + εd
(
Ψd(n)HΨd(n)

)−1
Ψd(n)H (27)

To simplify the weight update calculation and reduce the
computational complexity due to matrix inversion, we use
matrix inversion lemma and simplify the filter weight update
equation (20) as:

wH
n+1 = wH

n + εdΨd(n)H
(
Ψd(n)Ψd(n)H

)−1 (28)
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or in element-wise form as:

wH
n+1 = wH

n +

( N∑
l=1

[
e(n)− ε(n− l)

][
ϕHn − ϕHn−l

])
×([

ϕn − ϕn−l
][
ϕHn − ϕHn−l

]
+ ...+

[
ϕn − ϕn−N

][
ϕHn − ϕHn−N

])−1

(29)

Using Quaternion Left Hilbert Space inner product proper-
ties we can simplify the equation (29) as:

wH
n+1 = wH

n +

( N∑
l=1

[
e(n)− ε(n− l)

][
ϕHn − ϕHn−l

])
×([

ϕHn − ϕHn−l
][
ϕn − ϕn−l

]
+ ...+

[
ϕHn − ϕHn−N

][
ϕn − ϕn−N

])−1

(30)

Therefore by expanding the vectors multiplications we can
overwrite equation (30) as follow:

wH
n+1 = wH

n +

( N∑
l=1

[
e(n)− ε(n− l)

][
ϕHn − ϕHn−l

])
×(

ϕHn ϕn − ϕHn ϕn−1 − ϕHn−1ϕn + ϕHn−1ϕn−1 + ...

ϕHn ϕn − ϕHn ϕn−N − ϕHn−Nϕn + ϕHn−Nϕn−N

)−1

(31)

Using properties of Quaternion Reproducing Kernel Hilbert
Space (QRKHS) and the ’kernel trick’ to replace the inner
product of two vectors with quaternion kernel κ̄σ̄ , we can
simplify the equation (31) in kernel form as:

wH
n+1 = wH

n +

( N∑
l=1

[
e(n)− ε(n− l)

][
ϕHn − ϕHn−l

])
×(

κ̄σ̄(un,un)− 2κ̄σ̄(un,un−1) + κ̄σ̄(un−1,un−1) + ...

κ̄σ̄(un,un)− 2κ̄σ̄(un,un−N) + κ̄σ̄(un−N,un−N)...

)−1

(32)

For use of the kernel trick, we use quaternion-extended real
Gaussian kernel in [5], where κ̄σ̄(., .) is real Gaussian kernel.
Therefore in equation (32) the inverse term is real number can
be moved to right or left side in multiplication with quaternion
numbers. By setting wH

0 = 0 and including a step size factor
η, the weight update recursion can be calculated as:

wH
n = η

n−1∑
p=0

( N∑
l=1

[
e(p)− ε(p− l)

][
ϕHp − ϕHp−l

])
×

( N∑
l=1

κ̄σ̄(up,up)− 2κ̄σ̄(up,up−l) + κ̄σ̄(up−l,up−l)

)−1

(33)

By substituting the weight update in the yn = wH
n ϕn and

using properties of Quaternion Reproducing Kernel Hilbert
Space (QRKHS) and the ’kernel trick’ to replace the inner
product of two vectors with quaternion kernel κ̄σ̄ , equation
(13) can be simplified in kernel form as:

yn = η

n−1∑
p=0

( N∑
l=1

[
e(p)− ε(p− l)

][
κ̄σ̄(up,un)− κ̄σ̄(up−l,un)

])

×
( N∑
l=1

κ̄σ̄(up,up)− 2κ̄σ̄(up,up−l) + κ̄σ̄(up−l,up−l)

)−1

(34)

IV. CONVERGENCE ANALYSIS
The goal of the convergence analysis is to find a range

for learning step size η in equation (33) which QKNMEE
converges to optimal set of weights. To studying convergence
of QKMEE algorithm, we consider an approach using the
energy conservation relation [19]. The weight error at iteration
n+ 1 can be defined as:

vn+1 = w0 −wn+1

= w0 − (wn + ∆wn)

= vn −∆wn

(35)

For checking energy conservation, we initially find prior and
posteriori errors: ean = vHn ϕn and epn = vHn+1ϕn where

epn = vHn+1ϕn

= (vHn −∆wH
n )ϕn

= ean −∆wH
n ϕn

= ean − η

×
( N∑
l=1

[
e(n)− e(n− l)

][
ϕHn ϕn − ϕHn−lϕn

])

×
( N∑
l=1

κ̄σ̄(up,up)− 2κ̄σ̄(up,up−l) + κ̄σ̄(up−l,up−l)

)−1

(36)

To simplify calculation, function γ(n) can be defined as:

γ(n) ,

( N∑
l=1

[
e(n)− e(n− l)

][
κ̄σ̄(un,un)− κ̄σ̄(un−l,un)

])

×
( N∑
l=1

κ̄σ̄(up,up)− 2κ̄σ̄(up,up−l) + κ̄σ̄(up−l,up−l)

)−1

(37)
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thus, the energy can be expressed as:∥∥∥vHn+1ϕn

∥∥∥2

=
∥∥∥vHn ϕn − ηγ(n)

∥∥∥2

=
∥∥∥vHn ϕn∥∥∥2

+ vHn ϕn
(
− ηγ∗(n)

)
+
(
− ηγ(n)

)(
vHn ϕn

)∗
+
∥∥−ηγ(n)

∥∥2

=
∥∥∥vHn ϕn∥∥∥2

− 2ηRe
(
vHn ϕnγ

∗(n)
)

+ η2
∥∥γ(n)

∥∥2

(38)

Using Cauchy Schwarz inequality in Hilbert space and normal-
ized kernel κ̄σ̄(un,un) = 1, we can expressed the following
inequality as:

∥∥∥vHn+1ϕn

∥∥∥2

≤‖vn+1‖2‖ϕn‖2 =‖vn+1‖2 κ̄σ̄(un,un) (39)

therefore ∥∥∥vHn+1ϕn

∥∥∥2

≤‖vn+1‖2 (40)

and ∥∥∥vHn ϕn∥∥∥2

≤‖vn‖2 (41)

by subtracting (41) form (40), inequality can be written as:

∥∥∥vHn+1ϕn

∥∥∥2

−
∥∥∥vHn ϕn∥∥∥2

≤‖vn+1‖2 −‖vn‖2 (42)

by taking expectation of both sides of (42) :

E
∥∥∥vHn+1ϕn

∥∥∥2

− E
∥∥∥vHn ϕn∥∥∥2

≤ E‖vn+1‖2 − E‖vn‖2 (43)

For convergence, the energy of the weight error vector should
gradually reduce per iteration. Thus

E

[∥∥∥vHn+1ϕn

∥∥∥2
]
− E

[∥∥∥vHn ϕn∥∥∥2
]
< 0 (44)

therefore, by taking expectation of both sides of equation (38)
and using inequality (44)

E

[∥∥∥vHn+1ϕn

∥∥∥2
]
− E

[∥∥∥vHn ϕn∥∥∥2
]

= −2ηE

[
Re
(
vHn ϕnγ

∗(n)
)]

+ η2E

[∥∥γ(n)
∥∥2
]

< 0

(45)

Thus, in order the algorithm converges, the convergence step
size η should be:

η < 2

E

[
Re
(
epnγ
∗(n)

)]
E

[∥∥γ(n)
∥∥2
] (46)

V. SIMULATION RESULTS

A. channel estimation based on the Weiner nonlinear model

The Quat-KNMEE (QKNMEE) algorithm was simulated
with Parzen Window lenght N = 10 for a nonlinear channel
with non-Gaussian noise versus Quat-KLMS[13]. The channel
consisted of the quaternion filter, i.e.,

z(n) = g∗1u(n) + g∗2u
i(n) + g∗3u

j(n) + g∗4u
k(n)

+h∗1u(n− 1) + h∗2u
i(n− 1) + h∗3u

j(n− 1) + h∗4u
k(n− 1)

and nonlineraity, i.e.,

y(n) = z(n) + az2(n) + bz3(n) + v(n)

where v(n) is added non-Gaussian noise described later.
Coefficients g1, ..., g4, h1, ..., h4, a, b, and noise v(n) are all
quaternion valued.The coefficients used were

a = 0.075 + i0.35 + j0.1− k0.05,
b = −0.025− i0.25− j0.05 + k0.03,
g1 = −0.40 + i0.30 + j0.15− k0.45,
h1 = 0.175− i0.025 + j0.1 + k0.15,
g2 = −0.35− i0.15− j0.05 + k0.20,
h2 = 0.15− i0.225 + j0.125− k0.075,
g3 = −0.10− i0.40 + j0.20− k0.05,
h3 = +0.025 + i0.075− j0.05− k0.05,
g4 = +0.35 + i0.10− j0.10− k0.15,
h4 = −0.05− i0.075− j0.075 + k0.175.

For the tests, both input u(n) and noise v(n) were
formed using impulsive Gaussian mixture models to form
non-Gaussian signals. A quaternion random variable with
components from different real Gaussian distributions was
formed [7]. The probability distributions used were

pu(i) = (0.85N(1.0, 0.01) + 0.15N(3.0, 0.01))
+ i(0.40N(0.5, 0.01) + 0.60N(2.5, 0.01))
+ j(0.65N(3.5, 0.01) + 0.35N(1.5, 0.01))
+ k(0.25N(2.0, 0.01) + 0.75N(5.5, 0.01))

pv(i) = (0.90N(0.0, 0.01) + 0.10N(1.0, 0.01))
+ i(0.70N(3.0, 0.01) + 0.30N(0.5, 0.01))
+ j(0.45N(1.0, 0.01) + 0.55N(4.5, 0.01))
+ k(0.80N(0.5, 0.01) + 0.20N(1.5, 0.01))

where N(mN , σN ) denotes the normal (Gaussian) PDF
with mean mN and variance σN . The Quat-KNMEE and
Quat-KLMS simulation results for the nonlinear channel
described are shown in Fig. 1 to Fig 2. Figs. 1 which are
ensemble-averaged over 10 realizations.

To compare the performance of new proposed algorithm
Quat-KNMEE with Quat-KMEE and Quat-KLMS, the pa-
rameters of all three algorithms were chosen that all three
algorithms reached the same steady state mean square errors.
For this reason the parameters for the Quat-KNMEE were
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η = 3, σ̄ = 2.24 and for the Quat-KMEE were η = 0.4,
σ̄ = 2.24, and σ = 0.736 and for the Quat-KLMS η = 0.5,
σ̄ = 2.24 were used.

Fig. 1 shows the performance comparisons when the input
power was set to -5.1 dB and measurement noise = 12.5
dBm. As shown in Fig. 1, The new proposed algorithm Quat-
KNMEE converged with 1000 iterations where the Quat-
KMEE converged with 2000 iterations. It is clear from Fig
1, that the new proposed algorithm Quat-KNMEE converges
faster compared to the other two algorithms Quat-KMEE and
Quat-KLMS.

To show that the Quat-KNMEE filter update stepsize se-
lection is independent of the input power, the input power of
second simulation was increased to 1.75dB while all stepsize
of all three algorithms were kept the same as before. Fig. 2
shows the input power impacts on three algorithms when input
power was set to 1.75dB. As shown in Fig. 2, the convergence
rate of the Quat-KNMEE didn’t change and converged within
1000 iterations while the convergence rate and stability of the
other two algorithms Quat-KMEE and Quat-KLMS changed
and converged faster compare to the first simulation using
smaller input power.

Fig. 3 shows the learning curves of the Quat-KNMEE filter
with different convergence step sizes. As shown in Fig. 3 when
the step size parameter η increases, the rate of convergence of
Quat-KNMEE algorithm is correspondingly increased. When
the step size is set to values greater than 5, the algorithm
couldn’t converge and becomes unstable.
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Fig. 1. Learning curves for Quat-KNMEE, Quat-KMEE and Quat-KLMS and
for non-Gaussian signal with input power = -5.1 dB

VI. CONCLUSION

We have shown the derivation and convergence analysis of
a quaternion kernel adaptive algorithm based on normalized
minimum error entropy. The algorithm is based on infor-
mation theoretic learning (ITL) cost function. The resulting
algorithm is the Quat-KNMEE algorithm using GHR calculus.
A gradient is derived based on quaternion RKHS. Simulation
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Fig. 2. Learning curves for Quat-KNMEE, Quat-KMEE and Quat-KLMS and
for non-Gaussian signal with input power = 1.75 dB
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Fig. 3. Learning curves for Quat-KNMEE with different convergence step size
for non-Gaussian signal with input power = -5.1 dB

results show the convergence curve of the mean square error
of the new algorithm (QKNMEE) versus the existing algo-
rithms Quat-KMEE (QKMEE) and Quat-KLMS (QKLMS).
The algorithm’s convergence is very fast and outperforms the
existing one QKMEE and QKLMS. The convergence analysis
(46) shows that convergence step-size is independent of kernel
size. The simulation results show that the convergence rate of
the Quat-KNMEE is independent of the input power and the
kernel size. QKNMEE algorithm gives better performance for
low signal to noise ratio (SNR) environments.
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