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Abstract—This paper discusses the advantages in complex-
valued and quaternion neural networks (CVNNs and QNNs) by
presenting important concepts as well as applications in electronic
engineering. Essentially, CVNNs and QNNs have excellent gen-
eralization ability in the learning of two- and three-dimensional
rotation and scaling, respectively. Its origin is the sparsity in
themselves as complex and quaternion numbers. The ability is
useful in particular in adaptive processing of waves consisting of
complex amplitude (amplitude and phase) and/or polarization.
We consider an example in communications where we deal with
channel prediction to discuss the superiority in CVNNs and its
basics.

I. INTRODUCTION

Neural network research and development have been pro-
moted forward by the cooperation of mathematics, physics,
physiology and psychology to elucidate the human brain
mechanisms as well as to utilize its findings in engineering
so that we can construct systems which provide us with great
functionality beyond human beings in specific aspects [2]–
[8]. Complex-valued neural networks (CVNNs) and quaternion
neural networks (QNNs) are constructed by, and dealing with,
complex and quaternion numbers, respectively, to realize such
super-human systems.

Most CVNNs and QNNs aim at engineering applications
rather than human physiology or psychology [9]–[12]. In
electrical and electronic engineering, CVNNs are the networks
dealing with complex amplitude. That is, they are coherent
neural networks, that treat phase information in a consistent
manner. They are very powerful in phase-sensitive physics
and systems such as satellite/air-borne synthetic aperture radar
(SAR) [13]–[16], ground penetrating radar (GPR) [17]–[20],
quantum computing [21], [22], and lightwave computing
[23], [24]. Analyses of the performance and dynamics in
such systems are also very active in various fields such
as communication systems [25] and related mathematics in
complex manifold [26], [27]. Similarly, QNNs are widely
effective in polarization processing when we represent its state
on/in the Poincare sphere because of the high generalization
ability in three-dimensional space [28]–[30]. Many ideas have
been proposed on supervised land classification [31]–[34],
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unsupervised classification [35], [36], and also self-organizing
codebook generation [37]. Moreover, device applications are
also within the CVNN applications. For example, a reservoir
computing device using spin waves without hard wiring has
also been proposed [38]–[42].

We can observe these trends from an inverse-directional
sight as follows. Adaptive signal processing based on learning
and self-organization has a long history in such fields as adap-
tive antennas and inverse problems [43]. In linear systems, the
complex least mean square (LMS) algorithm was proposed in
1975 [44] and used in various steepest-descent and conjugate-
gradient systems [45]. CVNN is a more generalized framework
by introducing nonlinearity, layers and various connection
forms. Recent special issue on CVNNs [46] also focuses
on such aspects of CVNNs in their theories [47], [48] and
applications [49]–[52].

People just using neural networks as convenient tools may
sometimes say,“ a neural network solves problem, but it is a
black box that presents nothing about the logical deduction or
reasoning.”It is true that a neural network is not a“ logic”
machine, but actually it presents the reasons. In reality, there
exist many networks which analyze problems and/or extract
features, namely, deep-learning networks based on classical
hourglass-structure neural networks [53], [54], and convolu-
tional neural networks including the Neocognitron [55], [56].
Neural networks reflect the external world in their connections.
Then, it is also possible for us to prepare a network suitable for
respective tasks to be dealt with. A good example is adaptive
antennas. CVNN is a network incorporating the wave physics.
It is also a combination of things (physics) of electromagnetic
wave propagation and scattering and things (matters, affairs)
of adaptive and statistical information processing.

CVNNs show the merits in, for example, earth observation
from space, several hundred kilometers above land, by using
microwave transmitted from a satellite and processing the
scattered wave data with the synthetic aperture process, to
obtain earth surface information included basically in the
amplitude, phase and polarization [57]. The raw data often suf-
fer from the distortion generated by propagation, diffraction,
refraction, interference and spatial and temporal discreteness
in observation. Restoration of the real information included
in the distorted data requires good estimation and prediction
methods. Here the CVNNs, supposing wave physics, play an
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Fig. 1. (a) A set of teacher input-output signals, (b) a look-up table and (c)
processing with one (solid) or another (broken) generalization characteristic
for estimation and prediction [1].

important role [58], [59]. Their estimation and prediction are
the result of the combination of mathematics of adaptation
and physics of waves. The application fields are expanding
continuously. The precise and global observation of earth
surface forms and motions will realize dense and quasi-real-
time monitoring of volcano activities, earthquake damages,
changes in glaciers and pole ices as well as forest biomass
in relation to global warming, agricultural product based on
polarization changes, and so on and so forth. All of them are
related to the key issues to be solved in the present society,
namely, sustainable development goals (SDGs).

This paper discusses the essence of CVNNs by focusing
on the generalization ability. Then we check the merit briefly
in communication channel prediction. In the presentation, we
discuss also QNNs as well.

II. GENERALIZATION ABILITY

Generalization ability is the most important concept in
neural networks and other adaptive signal processing. We
review and discuss the key points in the generalization ability
of CVNNs [58].

A. Sparsity and degree of freedom

In general, a neural network realizes its desired function by
adjusting the connection weights among neurons depending on
fed signals and environments. The adjustment is preformed
through supervised learning, unsupervised learning or rein-
forcement learning. The more the weights exist, the higher
the degree of freedom is.

Fig. 1(a) illustrates a function-approximation task which a
neural network is expected to learn by supervised learning
with the data having three teacher points in one-dimensional

input x and one-dimensional output y. We express these
teacher signal points as (̂·), i.e., (x̂, ŷ) = (1, 4), (3, 5), (6, 2).
This is a common situation in an adaptive antenna to adjust
its weights by using pilot signals and an inverse problem
to learn examples. If we expect appropriate outputs only at
these teacher inputs, we do not need any learning process.
Instead, we have only to make a table of (memorize) the
input-output values shown in Fig. 1(b). However, what we
actually expect is the input-output relationship shown by the
curve(s) in Fig. 1(c), generating outputs even for inputs that
were not used in the learning process. This is done by the
generalization ability, and the curve shows the generalization
characteristics. A good generalization characteristics are not
obtained by simply nullifying the square error

∑
(y − ŷ)2

where y is the output value varying through the learning
process. Moreover, we cannot say what curve is ideal before
an actual task is given.

A small degree of freedom (DoF) often prevents the con-
vergence of the error value to zero. Too large DoF, however,
makes the curve wind, resulting in inappropriate estimation
or prediction. Appropriate DoF is desired, which is realized
by pruning or addition of network connections. We have
also to check the meaningfulness of the alive connections
by examining the independence among the signals going
through the connections existing in parallel so that every
connection works meaningfully without redundancy. In this
sense, complex-valued connections and neurons hold a great
advantage in dealing with waves and wave-related information.
This is shown as follows.

B. Real 2×2 matrix representation
There are multiple manners to represent complex numbers.

In 1835, Hamilton defined complex number z in an algebraic
manner as ordered pair of real numbers, x and y, as z ≡ (x, y)
with the arithmetic of addition and multiplication as

(x1, y1) + (x2, y2) ≡ (x1 + x2, y1 + y2) (1)
(x1, y1) · (x2, y2) ≡ (x1x2 − y1y2, x1y2 + y1x2) (2)

where the multiplication has a special characteristic. We can
also use real 2×2 matrices to represent complex numbers [60],
[61]. With every complex number c = a+ ib, we associate the
C-linear transformation

Tc : C → C, z 7→ cz = ax− by + j(bx+ ay) (3)

If we identify C with R2 by

z = x+ jy =

(
x
y

)
(4)

it follows that

Tc

(
x
y

)
=

(
ax− by
bx+ ay

)
=

(
a −b
b a

)(
x
y

)
(5)

That is, the linear transformation Tc determined by c =

a + ib is represented by the matrix
(

a −b
b a

)
. Generally,
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layered two-input two-output feedforward network, (b) a possible degenerate
learning result that is mostly unuseful, (c) a complex-valued neural network
seemingly identical to (a), and (d) the learning result obtained in this small-
degree-of-freedom case [58].

a mapping represented by a 2×2 matrix is noncommutative.
However, in the present case, it becomes commutative. What
is most important is that this matrix representation clearly
expresses the function specific to complex numbers—that is,
the rotation and scaling as(

a −b
b a

)
= r

(
cos θ − sin θ
sin θ cos θ

)
(6)

III. COMPLEX NUMBERS IN FEEDFORWARD NEURAL
NETWORKS

Fig. 2 shows an example situation. We assume that a
network should realize a mapping that transforms an input
xIN to an output xOUT through supervised learning that
adjusts the synaptic weights wji. Simply, we have only a single
teacher pair of input and output signals.

Here we consider a case shown in Fig. 3(a), where we have
a single-layer 2-input 2-output feedforward neural network in
real number. For simplicity, we omit nonlinearity at the neu-
rons, i.e., activation function. The neurons have no threshold

either. Then we can express a general input–output relationship
as (

xOUT
1

xOUT
2

)
=

(
a b
c d

)(
xIN
1

xIN
2

)
(7)

There exist a variety of possible mapping obtained through the
learning because the number of parameters to be determined
is larger than that of the conditions; i.e., the learning task is
an ill-posed problem. The functional difference emerges as the
difference in the generalization characteristics. For example,
learning can result in a degenerate mapping shown in Fig. 3(b),
which is often unuseful in practice.

In contract, let us consider the mapping learning task in
the one-dimensional complex domain, which transforms a
complex value xIN = (xIN

1 , xIN
2 ) to another complex value

xOUT = (xOUT
1 , xOUT

2 ). Fig. 3(c) shows the complex-valued
network, where the weight is a single complex value. The
situation is expressed just like in (7) as(

xOUT
1

xOUT
2

)
=

(
|w| cos θ −|w| sin θ
|w| sin θ |w| cos θ

)(
xIN
1

xIN
2

)
(8)

where θ ≡ arg(w). There are only two parameters |w| and θ.
The learning result is given in Fig. 3(d). The DoF is lower,
and the arbitrariness of solution is reduced, resulting in a
simple combination of phase rotation and amplitude scaling.
This result is interpreted also as the effectiveness of sparsity
embedded in the number itself. This result is compatible with
wave phenomenon.

The size of the above network is so small that the rela-
tionship between the parameter number and DoF is estimated
very simply. In general, the dynamics of a neural network is
determined by various parameters such as network structure,
input–output data dimensions, and teacher signal numbers.
However, the above characteristics of phase rotation and
amplitude modulation are embedded in the complex-valued
network as a universal elemental process of weighting.

It is true that the essential merit of neural networks in
general lies in the high degree of freedom in learning and self-
organization. However, if we know a priori that the objective
quantities include ”phase” and/or ”amplitude,” we can reduce
possibly harmful portion of the freedom by employing a
complex-valued neural network, resulting in a more meaning-
ful generalization characteristic. The ”rotation” in the complex
multiplication works as an elemental process at the synapse,
and it realizes the advantageous reduction of the degree of
freedom. This is a type of sparsity built in the complex number
itself.

IV. CHANNEL PREDICTION IN MOBILE COMMUNICATIONS:
CVNN DEALS WITH THE COMPLEX CHANNEL AS AN

ACTUAL ENTITY

We present an example of the improvement of neural
dynamics by introducing physical picture into neural networks.
The example is channel prediction in mobile communications.
The details are given in Ref. [62].
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Channel prediction is indispensable for future effective pre-
equalization and/or transmission-power control in mobile com-
munications to avoid harmful fading phenomenon in multipath
environment. There have been many proposals in time domain
and frequency domain including super-resolution methods. But
they are not useful practically because of the poor prediction
performance and/or the large calculation cost. Recently, how-
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diction, CZT-ML-CVNN-based prediction, and actual channel characteristics
when the geometry causes strongly channel changes with severe fading [62].

ever, we solved this problem by proposing a new method by
combining the chirp z-transform (CZT) and a complex-valued
neural network [62].

Fig. 4 is the schematic diagram showing our channel
prediction. We transform the observation signal illustrated
in Fig. 4(a) by using the CZT to obtain the spectrum with
mitigation of discreteness as shown in (b). We realize the path
separation, by marking the peaks in the magnitude, based on
so-called Jakes model. We obtain the estimates of Doppler
shift frequency f̂m and the amplitude âm of path m, and also
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the phase θ̂m by referring to the phase spectrum shown in (c).
Previously before the proposal, we predicted the channel

based on the respective past parameters f̂m，âm，ϕ̂m indi-
vidually to obtain the present (t = 0) and future (t ≥ 0)
parameters f̃m，ãm，θ̃m as

f̃m, ãm, ϕ̃m
Predict←− f̂m, âm, ϕ̂m (9)

c̃(t) =
∑
m

ãme(j2πf̃mt+ϕ̃m) (10)

It worked well mostly. However, it sometimes failed when the
situation is very difficult. An example is shown in Fig. 5 where
the receiver runs just beside two scatters located near to each
other.

In our newly proposed method, we consider the channel
as a unified complex-valued entity, and treated it by using
the complex-valued layered neural network shown in Fig. 6
in combination with CZT generating a series of past channel
states ĉm(t− 1), ..., ĉm(t− IML) as

ĉm(t) ≡ âm(t)e(jθ̂m(t))

(θ̂m(t) ≡ 2πf̂m(t)t+ ϕ̂m(t)) (11)

c̃m(t)
Predict←− ĉm(t− 1), ..., ĉm(t− IML) (12)

We slide the prediction window by repeating this prediction
to come to the future time slot. Finally we unite the respective
path states c̃m(t) to predict the channel state in the future as

c̃(t) =
∑
m

c̃m(t) (13)

Prediction based on the estimated path states ĉm(t) ap-
peared more difficult than the prediction on the respective
parameters f̂m，âm，θ̂m. However, our physical experiments
showed a channel state with near-circular time evolution,
which matches the representation with the sparsity built in the
complex number itself. This fact suggests that the complex-
amplitude prediction is better than the prediction based on
respective Doppler frequency, magnitude and phase. Fig. 7
shows the bit error rate (BER) obtained for the difficult
case shown in Fig. 5 when we employ various prediction
methods, namely, time-domain linear prediction, time-domain
real-time recurrent-learning CVNN-based prediction, CZT
only without prediction process, CZT frequency-domain linear
prediction, CZT frequency-domain Lagrange-based predic-
tion, CZT frequency-domain auto-regression-model-based pre-
diction, CZT frequency-domain real-time recurrent-learning
CVNN-based prediction (the proposal), CZT frequency-
domain multilayer-CVNN-based prediction, and ideal case
where we assume that we could obtain actual channel state
(impossible in reality), respectively.

It is shown that our proposed method that combined the
CZT and the multilayer CVNN realizes the lowest BER.
The calculation cost is small because of its successive online
learning. The result directly presents the high performance of
the CVNN when it deals with wave information.

V. SUMMARY

This paper discussed the origin of the advantages of
CVNNs. We focused on the generalization ability originating
from the sparsity existing in the complex number itself. The
merit is clearly presented in the performance comparison in
channel prediction for mobile communications.
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