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Abstract—There are two main streams in up-to-date image
denoising algorithms: non-local self similarity (NSS) prior based
methods and convolutional neural network (CNN) based meth-
ods. The NSS based methods are favorable on images with regular
and repetitive patterns while the CNN based methods perform
better on irregular structures. In this paper, we propose a block-
matching convolutional neural network (BMCNN) method that
combines NSS prior and CNN. Initially, similar local patches
in the input image are integrated into a 3D block. In order
to prevent the noise from messing up the block matching,
we first apply an existing denoising algorithm on the noisy
image. The denoised image is employed as a pilot signal for
the block matching, and then denoising function for the block
is learned by a CNN structure. Experimental results show
that the proposed BMCNN algorithm achieves state-of-the-art
performance. In detail, BMCNN can restore both repetitive and
irregular structures.

I. INTRODUCTION

With current image capturing technologies, noise is in-
evitable especially in low light conditions. Moreover, captured
images can be affected by additional noises through the
compression and transmission procedures. Since the noise
degrades visual quality, compression performance, and also
the performance of computer vision algorithms, the image
denoising has been extensively studied over several decades
[1]–[11].

In order to estimate a clean image from its noisy observa-
tion, a number of methods that take account of certain image
priors have been developed. Among various image priors, the
NSS is considered a remarkable one such that it is employed
in most of current state-of-the-art methods. The NSS implies
that some patterns occur repeatedly in an image and the image
patches that have similar patterns can be located far from
each other. The nonlocal means filter [1] is a seminal work
that exploits this NSS prior. The employment of NSS prior
has boosted the performance of image denoising significantly,
and many up-to-date denoising algorithms [3], [7], [12]–[14]
can be categorized as NSS based methods. Most NSS based
methods consist of following steps. First, they find similar
patches and integrate them into a 3D block. Then the block
is denoised using some other priors such as low-band prior
[3], sparsity prior [13], [14] and low-rank prior [7]. Since the

patch similarity can be easily disrupted by noise, the NSS
based methods are usually implemented as two-step or iterative
procedures.

Although the NSS based methods show high denoising
performance, they have some limitations. First, since the block
denoising stage is designed considering a specific prior, it
is difficult to satisfy mixed characteristics of an image. For
example, some methods work very well with the regular
structures (such as stripe pattern) whereas some do not.
Furthermore, since the prior is based on human observation, it
can hardly be optimal. The NSS based methods also contain
some parameters that have to be tuned by a user, and it is
difficult to find the optimal parameters for the overall tasks.
Lastly, many NSS based methods such as LSSC [12], NCSR
[5] and WNNM [7] involve complex optimization problems.
These optimizations are very time-consuming, and also very
difficult to be parallelized.

Some researchers, meanwhile, developed discriminative
learning methods for image denoising, which learn the image
prior models and corresponding denoising function. Schmidt
et al. [15] proposed a cascade of shrinkage fields (CSF)
that unifies the random field-based model and quadratic op-
timization. Chen et al. [16] proposed a trainable nonlinear
reaction diffusion (TNRD) model which learns parameters for
a diffusion model by the gradient descent procedure. Although
these methods find optimal parameters in a data-driven man-
ner, they are limited to the specific prior model. Recently,
neural network based denoising algorithms [2], [9], [17] are
attracting considerable attentions for their performance and
fast processing by GPU. They trained networks which take
noisy patches as input and estimate noise-free original patch.
These networks consist of series of convolution operations
and non-linear activations. Since the neural network denoising
algorithms are also based on the data-driven framework, they
can learn at least locally optimal filters for the local regions
provided that sufficiently large number of training patches
from abundant dataset are available. It is believed that the
networks can also learn the priors which were neglected by
human observers or difficult to be implemented. However, the
patch-based denoising is basically a local processing and the
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existing neural network methods did not consider the NSS
prior. Hence, they often show inferior performance than the
NSS based methods especially in the case of regular and repet-
itive structures [18], which lowers the overall performance.

In this paper, a combined denoising framework named
block-matching convolutional neural network (BMCNN) is
presented. Fig. 1 illustrates the difference between the existing
denoising algorithms and the proposed method. As shown in
the figure, the proposed method finds similar patches and stack
them as a 3D input like BM3D [3], which is illustreated in
Fig. 1(d). By using the set of similar patches as the input,
the network is able to consider the NSS prior in addition to
the local prior that the conventional neural networks could
train. Compared to the conventional NSS based algorithms,
the BMCNN is a data-driven framework and thus can find
more accurate denoising function for the given input. Finally,
it will be explained that some of the conventional methods can
also be interpreted as a kind of BMCNN framework.

The rest of this paper is organized as follows. In Section
II, researches that are related with the proposed framework
are reviewed. There are two main topics: image denoising
based on NSS, and image restoration based on neural network.
Section III presents the proposed BMCNN network. In Section
IV, experimental results and the comparison with the state-
of-the-art methods are presented. This paper is concluded in
Section V.

II. RELATED WORKS

A. Image Denoising based on Nonlocal Self-similarity

Most state-of-the-art denoising methods [1], [3], [4], [7],
[19] employ NSS prior of natural images. The nonlocal means
filter (NLM) [1] was the first to employ this prior to estimate
a clean pixel from the relations of similar non-neighboring
blocks. Some other algorithms estimate the denoised patch
rather than estimating each pixel separately. For instance,
Dabov et al. [3] proposed the BM3D algorithm that exploits
non-local similar patches for denoising a patch. The similar
patches are found by block matching and they are stacked to
be a 3D block, which is then denoised in the 3D transform
domain. Dong et al. [4], [5] solved the denoising problem by
using the sparsity prior of natural images. Since the matrix
formed by similar patches is of low rank, finding the sparse
representation of noisy group results in a denoised patch.
Nejati et al. [13] proposed a low-rank regularized collaborative
filtering. Gu et al. [7] also considered denoising as a kind of
low-rank matrix approximation problem which is solved by
weighted nuclear norm minimization (WNNM). In addition to
the low-rank nature, they took advantage of the prior knowl-
edge that large singular value of the low-rank approximation
represents the major components of the image. Specifically,
the WNNM algorithm adopted the term that prevents large
singular values from shrinking in addition to the conventional
nuclear norm minimization (NNM) [20]. Recently, Zha et al.
[14] proposed to use group sparsity residual constraint. Their
method estimates a group sparse code instead of denoising the
group directly.

B. Image restoration based on Neural Network

Since Lecun et al. [21] showed that their CNN performs
very well in digit classification problem, various CNN struc-
tures and related algorithms have been developed for diverse
computer vision problems ranging from low to high-level
tasks. Among these, this section introduces some neural net-
work algorithms for image enhancement problems. In the early
stage of this work, some multilayer perceptrons (MLP) were
adopted for image processing. Burger et al. [2] showed that a
plain MLP can compete the state-of-the-art image denoising
methods (BM3D) provided that huge training set, deep net-
work and numerous neuron are available. Their method was
tested on several type of noise: Gaussian noise, salt-and-pepper
noise, compression artifact, etc. Schuler et al. [22] trained the
same structure to remove the artifacts that occur from non-
blind image deconvolution.

Meanwhile, many researchers have developed CNN based
algorithms. Jain et al. [9] proposed a CNN for denoising,
and discussed its relationship with the Markov random field
(MRF) [23]. Dong et al. [24] proposed a SRCNN, which is a
convolutional network for image super-resolution. Although
their network was lightweight, it achieved superior perfor-
mance to the conventional non-CNN approaches. They also
showed that some conventional super-resolution methods such
as sparse coding [25] can be considered a special case of deep
neural network. Their work was continued to the compression
artifact reduction [26]. Kim et al. [27], [28] proposed two
algorithms for image super-resolution. In [28], they presented
skip-connection from input to output layer. Since the input and
output are highly correlated in super-resolution problem, the
skip-connection was very effective. In [27], they introduced
a network with repeated convolution layers. Their recursive
structure enabled a very deep network without huge model
and prevented exploding/vanishing gradients [29].

Recently, some techniques such as residual learning [30] and
batch normalization [31] have made considerable contributions
in developing CNN based image processing algorithms. The
techniques contribute to stabilizing the convergence of the
network and improving the performance. For some examples,
Timofte et al. [32] adopted residual learning for image super-
resolution, and Zhang et al. [17] proposed a deep CNN using
both batch normalization and residual learning.

III. BLOCK MATCHING CONVOLUTIONAL NEURAL
NETWORK

In this section, we present the BMCNN that esimtates the
original image X from its noisy observation Y = X +
V , where we concentrate on additive white gaussian noise
(AWGN) that follows V ∼ N(0, σ2). The overview of our
algorithm is illustrated in Fig. 2. First, we apply an existing
denoising method to the noisy image. The denoised image is
regraded as a pilot signal for block matching. That is, we find
a group of similar patches from the input and pilot images,
which is denoised by a CNN. Finally, the denoised patches
are aggregated to form the output image.
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Fig. 1. Flow chart of (a) conventional NSS based system, (b) NN based system and (c) the proposed BMCNN. (d) Illustration of block-matching step.

Noisy Image

Pilot Image
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Block Matching Pilot Patch Blocks

Noisy Patch Blocks

Concatenate Input Blocks

Denoising 

Network
Denoised PatchesAggregationResult Image

Fig. 2. The flowchart of proposed BMCNN denoising algorithm.

A. Patch Extraction and Block Matching

The proposed method first extracts overlapping patches
{yp} of fixed size Npatch × Npatch from Y . In general, the
patch-based denoising algorithms show the best performance
when they process all possible overlapping patches (i.e., the
patches are extracted with the stride 1), which is obviously
computationally demanding. Hence, many previous studies [2],
[3], [7] suggested to use some larger stride that decreases
computations while not much degrading the performance.
Accordingly, the proposed algorithm extracts the reference
patches (patches to be denoised) with the stride Nstep > 1.

For each reference patch yp with the center pixel at p, the
proposed method searches for similar patches in its neighbor-

hood. The searching step is based on a block matching method
proposed in [3], where the dissimilarity between two patches
yp, yq is measured by their l2 distance

d(yp, yq) = ‖yp − yq‖22. (1)

Based on the l2 distance, k patches nearest to the reference
patch including yp itself are selected and stacked, which forms
a 3D block {Yp} of size Npatch ×Npatch × k.

1) Pilot Signal for Block Matching: The proposed frame-
work is aimed to take advantage of NSS by gathering similar
patching through block-matching. But this can be disrupted
by severe noise when only the noisy image Y is available so
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that the distance between the patches (1) is corrupted. In [3],
it is presented that the distance is a non-central chi-squared
random variable with the mean

E(d(yp, yq)) = d(xp, xq) + 2σ2N2
patch (2)

and variance

V (d(yp, yq)) = 8σ2N2
patch(σ

2 + d(xp, xq)). (3)

As shown, the variance grows with O(σ4), and thus the block
matching results are likely to depend on the noise distribution
as well as the ground-truth block distance, especially with a
large σ. In order to alleviate this problem, we adopt an existing
denoising algorithm as a preprocessing step. The preprocessing
step estimates a denoised image X̂basic, which is named pilot
image and used for our algorithm as follows:
• Block-matching is performed on X̂basic. Since the pre-

processing attenuates the noise, the block-matching on
the pilot image provides more accurate results.

• The group is formed by stacking both the similar patches
in the pilot image and the corresponding noisy patches.
Since some information can be lost by denoising, noisy
input patch can help reconstructing the details of the
image.

In this paper, we mainly use DnCNN [17] to find the pilot
image because of its promising denoising performance and
short run-time on GPU. We also use BM3D as a preprocessing
step, which show almost the same performance on the average.
But the DnCNN and BM3D lead to somewhat different
results for the individual image as will be explained with the
experiments.

B. Network Structure

In CNN based methods, designing a network structure is
an essential step that determines the performance. Simonyan
et al. [33] pointed out that deep networks consisting of small
convolutional filters with filter size 3×3 can achieve favorable
performance in many computer vision tasks. Based on this
principle, the DnCNN [17] employed only 3×3 filters, and our
network is also consisted of 3×3 filters, with residual learning
and batch normalization. The architecture of the network is
illustrated in Fig. 3.

In our algorithm, the depth is set to 17, and the network is
composed of three types of layers. The first layer generates
64 low-level feature maps using 64 filters of size 3× 3× 2k,
for the k patches from the input and another k patches
from the preprocessed image. The feature maps are processed
by a rectified linear unit (ReLU) to grant nonlinearity. This
layer is also called Stem. The layers except for the first and
the last layer (layer 2 ∼ 16) contain batch normalization
between the convolution filters and ReLU operation. The batch
normalization for feature maps is proven to offer some merits
in many previous works [31], [34], [35], such as the alleviation
of internal covariate shift. All the convolution operations for
these layers use 64 filters of size 3 × 3 × 64. The last layer
consists of only a convolution layer. The layer uses a single

3 × 3 × 64 filter to construct the output from the processed
feature maps. In this paper, the network adopts the residual
learning [30] f(Y ) = V . Hence, the output of the last layer is
the estimated noise component of the input and the denoised
patch is obtained by subtracting the output from the input.
These layers can also be categorized into three stages as
follows.

1) Feature Extraction: At the first stage (layer 1 ∼ 6),
the features of the patches are extracted. Fig. 4(a)∼(c) show
the function of the stage. The first layer transforms the input
patches into low-level feature maps including the edges, and
then the following layers generate gradually higher-level-
features. The output of this stage contains complicated features
and some features about the noise components.

2) Feature Refinement: The second stage (layer 7 ∼ 11)
processes the feature maps to construct the target feature maps.
In existing networks [24], [26], the refinement stage filters the
noise component out because the main objective is to acquire a
clean image. On the other hands, the target of our algorithm is
a noise patch. Hence, the refined feature maps are comprised
of the noise components as shown in Fig. 4(d).

3) Reconstruction: The last stage (layer 12 ∼ 17) makes
the residual patch from the noise feature maps. The stage can
be considered an inverse of the feature extraction stage in
that the layers in the reconstruction stage gradually constructs
lower-level features from high level feature maps as shown
in Fig 4(d)∼(f). Despite all the layers share the similar form,
they contribute different operations throughout the network. It
gives some intuitions in designing an end-to-end network for
image processing.

C. Patch aggregation

In order to obtain the denoised image, it is straightforward
to place the denoised patches x̂p at the locations of their
noisy counterparts yp. However, as suggested in Sec. III-A,
the step size Nstep is smaller than the patch size Npatch,
which yields an overcomplete result consequently. In other
words, image pixels are estimated in multiple patches. Hence,
a patch aggregation step that computes the appropriate value
x̃(i, j) for a pixel (i, j) from a number of estimates x̂p(i, j)
is required. The simplest method for aggregation is simply
averaging the estimates as

x̃(i, j) =

∑
(i,j)∈x̂p

x̂p(i, j)∑
(i,j)∈x̂p

1
. (4)

However, in some studies [2], [22], it is shown that weighting
the patches x̂p with a simple Gaussian window improves
the aggregation results. Hence we also employ the Gaussian
weighted aggregation

x̃(i, j) =

∑
(i,j)∈x̂p

wp(i, j)x̂p(i, j)∑
(i,j)∈x̂p

wp(i, j)
(5)

where the weights are determined as

wp(i, j) =
1√
2πσ2

w

exp−|p− (i, j)|2

2σ2
w

(6)
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Fig. 3. The architecture of the denoising network

(a) (b) (c) (d) (e) (f)
Fig. 4. Feature maps from the denoising network. (a) Patches in an input
image (b) the output of the first conv layer (c) the output of the feature
extraction stage (at the same time, the input to the feature processing stage)
(d) the output of the feature processing stage (at the same time, the input to
the reconstruction stage), (e) the input of the last layer, (f) the output residual
patch.

where σw is the parameter for weighting.

IV. EXPERIMENTS

A. Training Methodology

The proposed denoising network is implemented using the
Caffe package [36]. Training a network is identical to finding
an optimal mapping function

x̂p = F ({Wi}, yp) (7)

where Wi is the weight matrix including the bias for the i-th
layer. This is achieved by minimizing a cost function

L({Wi}) =
1

Nsample

∑
d(x̂p, xp) + λr({Wi}) (8)

where Nsample is the total number of the training samples,
d(x̂p, xp) is the distance between estimated result x̂p and its
ground truth xp, r({Wi}) is a regularization term designed to
enforce the sparseness, and λ is the weight for the regulariza-
tion term. Zhao et al [37] proposed several loss functions for
neural networks, among which we employ the L1 norm for

the distance:

d(x̂p, xp) =
∑
k

|x̂p[k]− xp[k]| (9)

because of its simplicity for implementation in addition to its
promising performance for image restoration. The objective
function is minimized using Adam, which is known as an
efficient stochastic optimization method [36]. In detail, Adam
solver updates (W )i by the formula

(mt)i = β1(mt−1)i + (1− β1)(5L(Wt))i, (10)
(vt)i = β1(vt−1)i + (1− β1)(5L(Wt))

2
i , (11)

(Wt+1)i = (Wt)i − α
√
1− (β2)t

1− (β1)t
(mt)i√
(vt)i + ε

(12)

where β1 and β2 are training parameters, α is the learning
rate, and ε is a term to avoid zero division. In the proposed
algorithm, the parameters are set as: λ = 0.0002, α =
0.001, β1 = 0.9, β2 = 0.999 and ε = 1e − 8. The initial
values of (W0)i are set by Xavier initialization [37]. In Caffe,
the Xavier initialization draws the values from the distribution

(W0)i ∼ N(0,
1

(Nin)i
) (13)

where (Nin)i is the number of neurons feeding into the layer.
The bias of every convolution layer is initialized to a constant
value 0.2. We train the BMCNN models for three noise levels:
σ = 15, 25 and 50.

B. Training and Test Data

Recent studies [16], [17] show that less than million training
samples are sufficient to learn a favorable network. Following
these works, we use 400 images from the Berkeley Segmen-
tation dataset(BSDS) [38] for the training. All the images
are cropped to the size of 180 × 180 and data augmentation
techniques like flip and rotation are applied. From all the
images, training samples are extracted by the procedure in Sec.
III-A1. We set the block size as 20× 20× 4 and the stride as
20. The total number of the training samples is 259,200.

We test our algorithm on standard images that are widely
used for the test of denoising. Fig. 5 shows the 12 images
that constitute the test set. The set contains 4 images of size
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Fig. 5. The 12 test images used in the experiments

256×256 (Cameraman, House, Peppers and Montage), and 8
images of size 512× 512 (Lena, Barbara, Boat, Fingerprint,
Man, Couple, Hill and Jetplane). Note that the test set contains
both repetitive patterns and irregularly textured images.

C. Comparision with the State-of-the-Art Methods

In this section, we evaluate the performance of the proposed
BMCNN and compare it with the state-of-the-art denoising
methods, including NSS based methods(i.e., BM3D [3], NCSR
[4], and WNNM [7]), and training based methods (i.e., MLP
[2], TNRD [16], and DnCNN [17]). All the experiments are
performed on the same machine - Intel 3.4GHz dual core
processor, nVidia GTX 780ti GPU and 16GB memory.

1) Quantitave and Qualitative Evaluation: The PSNRs of
denoised images are listed in Table I. It can be seen that the
proposed BMCNN yields the highest average PSNR for every
noise level. It shows that the PSNR is improved by 0.1 0.2dB
compared to DnCNN. Especially, there is large performance
gain in the case of images with regular and repetitive structure,
such as Barbara and Fingerprint, which are the images that
the NSS based methods perform better than the learning based
methods. In this sense, it is believed that adopting the block
matching brings the cons of NSS to the learning based metod.
Fig. 6 and 7 illustrate the visual results. The NSS based
methods tend to blur the complex parts like a stalk of a
fruit and the learning based methods often miss details on the
repetitive parts such as the stripes of fingerprint. In contrast,
the BMCNN recovers clear texture in both types of regions.

2) Running Time: Table II shows the average run-time of
the denoising methods for the images of sizes 256 × 256
and 512× 512. For TNRD, DnCNN and BMCNN, the times
on GPU are computed. As shown, many conventional NSS
based methods including NCSR and WNNM need very long
times, which is mainly due to the complex optimization
and/or matrix decomposition. On the other hands, since the
BM3D consists of simple linear transform and non-linear
filtering, it is much faster than the NCSR and WNNM. Since
our BMCNN also consists of convolution and simple ReLU
function, its computational cost is also less than the WNNM
and NCSR. The BMCNN is, however, slower than other
learning based approaches for three main reasons. First, our
algorithm is a two-step approach that uses another end-to-
end denoising algorithm as a preprocessing step. Therefore the

computational cost is doubled. Second, the BMCNN contains
a block matching step, which is difficult to be implement
with GPU. In our algorithm, the block matching step takes
almost half of the run-time. Finally, because of the nature
of block-matching, the BMCNN is inherently a patch-based
denoising algorithm. In order to prevent the artifacts around
the boundaries between the denoised patches, the patches
are extracted with overlapping. Hence, a pixel is processed
multiple times and the overall run-time increases. Although
our algorithm is slower for these reasons, our BMCNN is
still competitive considering that it is much faster than the
conventional NSS based methods and that it provides higher
PSNR than others.

D. Effects of Network Formulation

In this subsection, we modify some settings of the BMCNN
to investigate the relations between the settings and perfor-
mance. All the additional experiments are made with σ = 25.

1) NSS Prior: In this paper, we take the NSS prior into
account by adopting block matching, i.e., by using the ag-
gregated similar patches as the input to the CNN. In order
to show the effect of NSS prior, we conduct additional
experiments: we train a network that estimates a denoised
patch using only two patches as the input, specifically a
noisy patch and corresponding pilot patch without further
aggregation. We name the network as woBMCNN, and its
PSNR results are summarized in Table. III. The result validates
that the performance gain is owing to the block matching
rather than two-step denoising. Interestingly, the woBMCNN
does not performed better than DnCNN, which is used as the
preprocessing. Actually, the woBMCNN can be interpreted
as a deeper network with similar network formulation and a
skip connection [39]. However, since the DnCNN is already a
favorable network and the performance with the formulation
is saturated, the deeper network can hardly perform better. On
the other hands, the BMCNN encodes additional information
to the network, which is shown to play an important role.

2) Patch Size: In many patch-based algorithms, the patch
size is an important parameter that affects the performance. We
train three networks with patch size 10 × 10, 20 × 20 (base)
and 40× 40. Table IV shows that 20× 20 patch works better
than other sizes. Moreover, networks of patch size 10×10 and
40× 40 work even worse than its preprocessing.
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TABLE I
PSNR OF DIFFERENT DENOISING METHODS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method BM3D NCSR WNNM MLP TNRD DnCNN BMCNN
σ = 15

Cameraman 31.91 32.01 32.17 - 32.18 32.61 32.73
Lena 34.22 34.11 34.35 - 34.23 34.59 34.61

Barbara 33.07 33.03 33.56 - 32.11 32.60 33.08
Boat 32.12 32.04 32.25 - 32.14 32.41 32.42

Couple 32.08 31.94 32.13 - 31.89 32.40 32.41
Fingerprint 30.30 30.45 30.56 - 30.14 30.39 30.41

Hill 31.87 31.90 32.00 - 31.89 32.13 32.08
House 35.01 35.04 35.19 - 34.63 35.11 35.16

Jetplane 34.09 34.11 34.38 - 34.28 34.55 34.53
Man 31.88 31.92 32.07 - 32.18 32.42 32.39

Montage 35.11 34.89 35.65 - 35.02 35.52 35.97
Peppers 32.68 32.65 32.93 - 32.96 33.21 33.32
Average 32.86 32.84 33.10 - 32.82 33.16 33.26

σ = 25
Cameraman 29.44 29.47 29.64 29.59 29.69 30.11 30.20

Lena 32.06 31.95 32.27 32.28 32.05 32.48 32.53
Barbara 30.64 30.57 31.16 29.51 29.33 29.94 30.58

Boat 29.86 29.68 30.00 29.94 29.89 30.21 30.25
Couple 29.69 29.46 29.78 29.72 29.69 30.10 30.12

Fingerprint 27.71 27.84 27.96 27.66 27.33 27.64 28.01
Hill 29.82 29.68 29.96 29.83 29.77 29.99 30.00

House 32.95 32.98 33.33 32.66 32.64 33.23 33.32
Jetplane 31.63 31.62 31.89 31.87 31.77 32.06 32.17

Man 29.56 29.56 29.73 29.83 29.81 30.06 30.06
Montage 32.34 31.84 32.47 32.09 32.27 32.97 33.47
Peppers 30.21 29.96 30.45 30.45 30.51 30.80 30.93
Average 30.49 30.38 30.72 30.44 30.39 30.80 30.97

σ = 50
Cameraman 26.18 26.15 26.47 26.37 26.56 26.99 27.02

Lena 29.05 28.97 29.32 29.28 28.94 29.42 29.56
Barbara 27.08 26.93 27.70 25.26 25.69 26.13 26.84

Boat 26.72 26.50 26.89 27.04 26.85 27.17 27.19
Couple 26.42 26.19 26.59 26.68 26.48 26.88 26.91

Fingerprint 24.55 24.52 24.79 24.21 23.70 24.14 24.65
Hill 27.05 26.87 27.12 27.37 27.11 27.31 27.33

House 29.70 29.69 30.25 29.82 29.40 30.08 30.25
Jetplane 28.31 28.23 28.61 28.56 28.43 28.74 28.88

Man 26.73 26.62 26.91 27.05 26.94 27.18 27.17
Montage 27.65 27.62 27.97 28.06 28.12 29.03 29.50
Peppers 26.69 26.64 26.97 26.71 27.05 27.30 27.45
Average 27.18 27.08 27.47 27.20 27.11 27.53 27.73

TABLE II
RUN TIME (IN SECONDS) OF VARIOUS DENOISING METHODS OF SIZE 256× 256 WITH σ = 25.

Methods BM3D NCSR WNNM MLP TNRD DnCNN BMCNN
256× 256 0.87 190.3 179.9 2.238 0.038 0.053 2.135
512× 512 3.77 847.9 778.1 7.797 0.134 0.203 8.030
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(a) Original (b) BM3D (c) NCSR (d) WNNM

(e) MLP (f) TNRD (g) DnCNN (h) BMCNN

Fig. 6. Denoising result of the Fingerprint image with σ = 25.

(a) Original (b) BM3D (c) NCSR (d) WNNM

(e) MLP (f) TNRD (g) DnCNN (h) BMCNN

Fig. 7. Denoising result of the Peppers image with σ = 50.

Burger et al. [2] revealed that a larger patch contains more
information, and thus the neural network can learn more
accurate objective function with larger training patches. On
the contrary, we cannot train the mapping function reasonably
with small patches. But the large patch degrades the block
matching performance, because it becomes more difficult to
find well matched patches as the patch size increases. Fig. 8
shows the block matching result and the error for various patch
sizes. For a 10 × 10 patch and a 20 × 20 patch, the block-
matching finds almost the same patches and the error is very

small. For a 40× 40 patch, on the other hands, decent portion
of the patch does not fit well and the error becomes so big.
Conventional NSS based algorithms including [3] and [5] also
prefer small patches whose sizes are around 10× 10 for these
reasons. To conclude, 20 × 20 is the proper patch size that
satisfies both CNN and NSS prior.

3) Stride: Since the proposed method is patch-based, its
performance depends on the stride value to divide the input
images into the patches. With a small stride, each pixel appears
in many patches, which means that every pixel is processed
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TABLE III
PSNR RESULTS OF BMCNN, WOBMCNN AND THEIR BASE

PREPROCESSING-DNCNN.

BMCNN woBMCNN DnCNN
Cameraman 30.20 30.08 30.11

Lena 32.53 32.45 32.48
Barbara 30.58 29.91 29.94

Boat 30.25 30.17 30.21
Couple 30.12 30.09 30.10

Fingerprint 28.01 27.61 27.64
Hill 30.00 29.96 29.99

House 33.32 33.20 33.23
Jetplane 32.17 32.02 32.06

Man 30.06 30.04 30.06
Montage 33.47 33.02 32.97
Peppers 30.93 30.81 30.80
Average 30.97 30.78 30.80

TABLE IV
PSNR RESULTS OF BMCNN WITH VARIOUS PATCH SIZES.

10× 10 20× 20 40× 40

Cameraman 28.82 30.20 30.00
Lena 30.42 32.53 32.39

Barbara 29.05 30.58 29.72
Boat 29.01 30.25 30.07

Couple 28.89 30.12 29.97
Fingerprint 27.24 28.01 27.51

Hill 28.83 30.00 29.89
House 30.85 33.32 33.11

Jetplane 30.20 32.17 31.96
Man 28.84 30.06 29.96

Montage 30.47 33.47 32.72
Peppers 29.31 30.93 30.67
Average 29.33 30.97 30.66

multiple times. It definitely increases the computational costs
but has the possiblity of performance improvement. We test
our algorithm with various stride values and the results are
summarized in the Table V. From the result, we determine
that a stride value around the half of the patch size shows
reasonable performance for both the run time and the PSNR.

4) Pilot Signal: We also conduct an experiment to see how
the different preprocessing method (other than DnCNN in the
previous experiments) affect the the overall performance. For
the experiment, we employ BM3D [3] due to its NSS based
nature and reasonable run time. Table VI shows the denoising
performance with different preprocessing methods and two
interesting characteristics can be found.

• The performance on the individual image depends on
the preprocessing method. BMCNN-BM3D shows better
performance on Barbara, Fingerprint and House, where
NSS based WNNM performed better than the CNN based
DnCNN.

• However, the overall performance shows negligible differ-
ence. It implies the overall performance of the denoising
network depends on the network formulation, not the
preprocessing.

(a) 10× 10 (b) 20× 20 (c) 40× 40
Error : 0.0515 Error : 0.0672 Error : 0.1813

Fig. 8. The illustration of block matching result for various patch sizes.
The first row shows reference patches, the second row shows the 3rd-similar
patches to the references and the third row shows the difference of the first
and the second row. The error is defined as the average value of the difference.

TABLE V
PSNR AND RUN TIME RESULTS OF BMCNN WITH VARIOUS STRIDE.

5 10 15 20
Cameraman 30.21 30.20 30.20 30.18

Lena 32.53 32.53 32.52 32.51
Barbara 30.58 30.58 30.56 30.49

Boat 30.25 30.25 30.25 30.24
Couple 30.12 30.12 30.12 30.11

Fingerprint 28.03 28.01 28.01 27.97
Hill 30.00 30.00 30.00 30.00

House 33.32 33.32 33.32 33.30
Jetplane 32.17 32.17 32.16 32.16

Man 30.06 30.06 30.05 30.05
Montage 33.49 33.47 33.45 33.40
Peppers 30.94 30.93 30.93 30.92

Average PSNR 30.98 30.97 30.96 30.94
Average time(256× 256) 4.271 2.151 1.765 1.603
Average time(512× 512) 16.79 8.101 6.492 5.777

V. CONCLUSION

In this paper, we have proposed a framework that combines
two dominant approaches in up-to-date image denoising al-
gorithms, i.e., the NSS prior based methods and CNN based
methods. We train a network that estimates a noise component
from a group of similar patches. Unlike the conventional NSS
based methods, our denoiser is trained in a data-driven manner
to learn an optimal mapping function and thus achieves better
performance. Our BMCNN also shows better performance
than the existing CNN based method especially in the case of
images with regular structure, because the BMCNN considers
NSS in addition to the local characteristics.
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TABLE VI
PSNR OF BMCNN RESULTS WITH TWO DIFFERENT PREPROCESSING.

BMCNN-DnCNN BMCNN-BM3D
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Montage 33.47 33.31
Peppers 30.93 30.78
Average 30.97 30.97
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