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Abstract—A novel saliency detection algorithm for videos is
proposed in this paper. We adaptively determine the weights of
color and motion features to extract combined global feature
contrast by adopting the compactness prior of salient object.
We localize a saliency searching area in a current frame using
the saliency distribution computed at the previous frame. We
estimate the saliency by computing a relative feature distance
with respect to the salient object and local background, which is
weighted by global feature contrast. Experimental results show
that the proposed algorithm captures salient objects faithfully
on various videos, and outperforms the state-of-the art video
saliency detection methods qualitatively and quantitatively.

I. INTRODUCTION

Saliency detection is automatic extraction of visually mean-
ingful regions from images and videos. Saliency detection has
been studied to facilitate various applications such as image
retrieval [1], segmentation [2], and action recognition [3].
During the past decade, intensive research has been performed
on saliency detection of still images. Most of the image
saliency detection techniques compute saliency values based
on the center-surround contrast: a salient region yields a
distinct feature compared to its surrounding area. Moreover,
the constraints on the locations of salient foreground objects
and background are also employed. The center prior assumes
a salient object is highly probable to be located near the image
center [4], and the boundary prior regards the image bound-
aries are usually included to the background [5]. Recently,
machine learning techniques were adopted to detect saliency
of still images [6], [7], [8], [9].

While only the spatial features are employed to estimate
saliency of still images, spatial and temporal features should be
considered together for saliency detection of videos. Therefore,
the conventional image saliency detection methods often fail
to capture the video saliency successfully since they do not
use temporal information. Video saliency detection techniques
have been devised in two directions. First, spatial and temporal
saliency maps are obtained separately, and a final saliency map
is generated as a weighted summation of the two saliency
maps [10], [11], [12], [13], [14]. Huang et al. [10] empirically
determined the weights for combining spatial and temporal
saliency maps. Fang et al. [11] measured uncertainty of spatial
and temporal saliency values for each pixel, and used a larger
weight to the saliency value with lower uncertainty. Liu et
al. [12] determined the weights by checking the consistency
between spatial and temporal maps. Muthuswamy et al. [13]
assigned a high weight to the motion saliency map when

motion contrast is high. Li et al. [14] employed a higher
weight for the saliency map which highlights moving objects
more faithfully. These methods suffer from the limitation that
inaccurately assigned saliency values in either of the two
saliency maps degrade the quality of a final saliency map. On
the other hand, spatial and temporal features are combined
first, and the combined feature is used to generate a final
saliency map [15], [16], [17], [18], [19], [20], [21], [22]. Seo
et al. [15] computed the gradient of a pixel which is compared
to that of spatially and temporally surrounding pixels. Rahtu
et al. [16] constructed the histogram of spatial and temporal
features for video saliency detection. Xue et al. [17] separated
salient foreground objects from the background using a low-
rank matrix technique. Lee et al. [18] employed a support
vector machine to combine spatial and temporal features. Kim
et al. [19] computed a final saliency map by designing a
spatial transition matrix and a temporal restarting term based
on the random walk with restart. Wang et al. [20] integrated
the gradients of the spatial and temporal feature maps. Wang
et al. [21], [22] employed the spatiotemporal feature map and
the results of the previous frame to separate the foreground
and the background regions. However, these methods do not
utilize the spatial and temporal features adaptively according
to their changeable characteristics in various videos.

In this paper, we propose a novel video saliency detection
algorithm which combines the color and motion features
adaptively and estimates the saliency on localized searching
areas. We first extract global feature contrast by combining the
color and motion features adaptively at each frame based on
the compactness prior of salient object. We localize a searching
area of saliency detection in a current frame using the saliency
distribution in the previous frame, since the salient regions
detected in previous frames are highly probable to be also
salient in a current frame in typical videos. We also measure
the relative feature distances with respect to a salient object
and non-salient local background, respectively, which are then
weighted by the global feature contrast to estimate the final
saliency. Experimental results demonstrate that the proposed
algorithm yields a reliable performance of saliency detection
for video sequences with diverse characteristics of color and
motion, and outperforms the existing state-of-the-art methods.

II. FEATURE CONTRAST COMPUTATION

We partition each frame in an input video sequence into
superpixels using SLIC [23]. We compute the contrast of color
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Fig. 1: Relative motion feature contrast. (a) An input frame.
(b) The initial map of relative motion features and (c) its
gradient magnitude map. (d) The refined map of motion
feature contrast.

and motion features at each superpixel based on the boundary
prior, which are then combined adaptively according to the
compactness prior of salient object.

A. Color Feature Contrast

We extract a color feature c(pi) ∈ R3 for the i-th superpixel
pi as the average color of the pixels belonging to pi based
on the broadly tuned color space [24]. We compute color
feature contrast using the boundary prior, where a superpixel
yielding large feature distances to the boundary superpixels
is assigned a high contrast value. In order to handle the
exceptional cases that salient objects are placed touching
the image boundaries [25], we also partition the boundary
superpixels into the four sets Btop, Bbottom, Bleft, and Bright,
which are from the top, bottom, left, and right boundaries,
respectively. We measure the color dissimilarity at pi with
respect to each of the four boundary sets. For example, the
color dissimilarity dtop(pi) between pi and Btop is computed
as the minimum distance from c(pi) to the color features of
all the superpixels in Btop, given by

dtop(pi) = min
pk∈Btop

‖c(pi)− c(pk)‖. (1)

In the same way, dbottom(pi), dleft(pi), and dright(pi) are
measured by using Bbottom, Bleft, and Bright, respectively.
Finally, we estimate the color feature contrast fc(pi) of pi
as the maximum among the four dissimilarity values.

fc(pi)= max {dtop(pi), dbottom(pi), dleft(pi), dright(pi)} .
(2)

B. Motion Feature Contrast

In a video sequence, relative motion of a foreground object
with respect to the background is more recognizable than
absolute motion. At each frame of an input video sequence,
we first estimate the background motion as the average optical
flow vector [26] of the pixels in the boundary superpixels
based on the boundary prior assumption. Then we obtain

mt(x), a relative foreground motion at a pixel x in the t th
frame It, given by

mt(x) =
1

2N + 1

t+N∑
k=t−N

‖ok(x)− µk‖ (3)

where ok(x) is the optical flow vector of x in Ik, and µk

denotes the background motion vector in Ik, respectively.
Note that we consider 2N neighboring frames to estimate the
relative motion at a current frame, in order to avoid salient
foreground objects which are static at the current time instance
from being assigned low motion feature values. We empirically
set N = 2. Fig. 1(b) shows an example of the initial map
of relative motion features obtained from an input frame in
Fig. 1(a).

We also refine the initially obtained relative motion features
to suppress high values assigned to some background regions
using [20]. We compute the gradient of initial motion features,
and accumulate the gradient magnitudes at each pixel along
the four directions. Then we define a motion feature contrast
of each pixel by taking the minimum among the four values
of the accumulated gradient magnitudes. Fig. 1(c) shows the
gradient map of Fig. 1(b), and Fig. 1(d) shows the refined
motion feature contrast map where we see that the relatively
high contrast values in the bottom background region observed
in the initial map are effectively alleviated. Finally, we define
a motion feature contrast f tm(pi) of a superpixel pi in It by
taking the average over all pixels in pi.

C. Adaptive Combination of Color and Motion Features

Fig. 2 shows the resulting maps of superpixel-wise feature
contrast on two video sequences with different characteristics.
In the first row, the rhinoceros does not move and shakes
its head and tail slightly, and therefore the resulting motion
feature contrast in Fig. 2(d) fails to capture the whole salient
object region due to the lack of sufficient motion information.
However, the color feature contrast in Fig. 2(c) detects most
of the object region faithfully. In contrary, the bird in the
second row is falling fast, and the motion feature contrast in
Fig. 2(d) successfully indicates the bird. However, lots of the
background regions are assigned high contrast values of color
feature in Fig. 2(c), since the bird has a similar color to that
of the cluttered background.

In order to exploit the color and motion features adaptively
according to their confidence, we combine the two features
based on the compactness prior assumption that a salient object
yields a compact shape [24]. To this end, at the t-th frame, we
first normalize the color feature contrast f tc(pi) and the motion
feature contrast f tm(pi) into the range of [0, 1], respectively.
Then we combine f tc(pi) and f tm(pi) by assigning a higher
weight to the feature which exhibits more compact distribution
of superpixels with high feature contrast. Specifically, at each
superpixel pi in It, we compute a global feature contrast
f tcm(pi) given by

f tcm(pi) =

(
σtm

σtc + σtm

)
· f tc(pi) +

(
σtc

σtc + σtm

)
· f tm(pi) (4)
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Fig. 2: Color and motion features. (a) Input frames. (b) The ground truth saliency maps. (c) Color feature contrast maps. (d)
Motion feature contrast maps. (e) Combined feature contrast maps.

where σtc and σtm are the standard deviations weighted by the
color and motion feature contrast, respectively.

σt =

√∑
x∈Ωt f t(x)· ‖ x− x̄t ‖2∑

x∈Ωt f t(x)
(5)

where f t(x) is the feature contrast of the superpixel including
a pixel x, and Ωt is the set of the pixels belong to the
superpixels with feature contrast values larger than 40% of
the maximum value in It. x̄t is the average position of Ωt

weighted by the feature contrast, given by

x̄t =

∑
x∈Ωt f t(x) · x∑

x∈Ωt f t(x)
. (6)

Note that the weights in (4) are not fixed and rather adaptively
determined at each frame in a video sequence, respectively,
which reflect the relative confidence or contribution of color
and motion features for reliable extraction of global feature
contrast. As shown in Fig. 2(e), the combined feature contrast
detects the salient objects reliably, even though either of the
color and motion features is not extracted faithfully.

III. SALIENCY EVALUATION

The human visual system tends to recognize the visual
contents of a current frame together with that of the previous
frames. Moreover, a salient object appears in similar loca-
tions between adjacent frames in a typical video sequence.
Therefore, we first localize a set of candidate superpixels to
search for a salient object in a current frame by using the
saliency distribution computed at the previous frame. Then,
motivated by the object tracking method [27], we estimate the
saliency for each candidate superpixel by using the relative
feature distances with respect to a salient object and its local
background region. Finally, the saliency values are spatially
and temporally refined based on the energy minimization
framework.

A. Localized Searching Area

We define Φt a local searching area for a salient object in
It, which is composed of the superpixels geometrically close
to the salient region found at the previous frame It−1.

Φt =

{
p | δ(p) <

τ
√
W 2 +H2

λα(p)

}
(7)

where δ(p) is the shortest distance among the distances from
a superpixel p ∈ It to the superpixels in It−1 with saliency
values larger than 0.5. W and H denote the width and height
of image frame, and τ is set to be 0.05 empirically. Note that
the distance threshold is weighted by

λα(p) = exp
(
−α · f tcm(p)

)
, (8)

which encourages the superpixels with high feature contrast
of f tcm(p) to be included to Φt. We set α = 3 empirically.
At the first frame, we determine Φ1 as the set of superpixels
satisfying the condition λα(p) < 0.4, since there is no
previous frame. Fig. 3(c) shows the local searching area Φt

for an input frame in Fig. 3(a), where we see that the salient
objects as well as some non-salient background regions are
included.

Next, we find Rt−1
s the set of superpixels with the top

30% of saliency values in It−1. Fig. 3(d) shows the associated
region of Rt−1

s obtained from the previous frame in Fig. 3(b).
Moreover, we find Rtns the region of the three layers of
superpixels in It surrounding Φt. Fig. 3(e) shows Rtns of Φt in
Fig. 3(c). We see that Rt−1

s and Rtns exhibit color appearances
similar to that of the salient foreground object and its local
background, respectively.

B. Saliency Value Computation

Note that the salient superpixels in Φt have similar color
features to that of Rt−1

s , while the non-salient superpixels in
Φt have similar colors to that of Rtns. Based on this property,
we evaluate saliency values of the superpixel in Φt using the
color feature distances from Rt−1

s and Rtns. Specifically, we

500

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 3: Localized searching area. (a) Input frame It. (b) Previous frame It−1. (c) Local searching area Φt. (d) Rt−1
s in previous

frame. (e) Rtns in current frame. (f) Feature distance dts on Φt. (g) Feature distance dtns on Φt. (h) Initial saliency map S̃t. (i)
Final saliency map St.

measure the weighted dissimilarity of a color feature at each
superpixel pi in Φt from that of Rt−1

s and Rtns, respectively,
given by

dts(pi) =
λγ(pi)
|Rt−1

s |

∑
pj∈R

t−1
s

‖c(pi)− c(pj)‖, (9)

dtns(pi) =
1

λγ(pi) · |Rtns|
∑

pj∈Rt
ns

‖c(pi)− c(pj)‖. (10)

Note that the feature distances are also weighted by λγ(pi),
such that a superpixel with a high feature contrast is assigned
a decreased feature distance to Rt−1

s and at the same time an
increased distance to Rtns. We set γ = 1.5 empirically. At the
first frame, Rt−1

s is not available, and thus we set d1
s (pi) as

the maximum feature distance.
Figs. 3(f) and (g) show the resulting feature distances of

dts(pi) and dtns(pi), respectively, for the superpixels of Φt in
Fig. 3(c). In Fig. 3(f), we see that relatively large distances of
dts(pi) are associated with the background superpixels which
yield quite dissimilar colors from the foreground objects, while
small distances are assigned to the foreground superpixels. In
contrary, as shown in Fig. 3(g), relatively large distances of
dtns(pi) are assigned to the foreground superpixels, but the
background superpixels have small distances. Based on this
property, we compute an initial saliency value S̃t(pi) for each
superpixel pi ∈ Φt using a relative feature distance of dts(pi)
and dtns(pi) [27].

S̃t(pi) = exp

{
ξ

(
dtns(pi)

dts(pi) + dtns(pi)

)2
}

(11)

where we set ξ = 2 empirically. Fig. 3(h) shows the resulting
initial saliency values, where high saliency values are assigned
to the foreground superpixels which yield small distances of
dts(pi) and large distances of dtns(pi). We initialize the zero
saliency value for all the superpixels outside of Φt. The initial
saliency values are normalized into the range of [0, 1].

Then we obtain St a set of the final saliency values St(pi)’s
of all the superpixels in It by minimizing the following cost

function, a modified version of the cost function in [20].

E(St) =
∑

pi∈It

(
St(pi)− S̃t(pi)

)2

+
∑

pi∈It

∑
pj∈N (pi)

wpi,pj

(
St(pi)− St(pj)

)2
+
∑

pi∈It
wpi,qi

(
St(pi)− St−1(qi)

)2
. (12)

The first term denotes a data cost. The second term computes a
spatial smoothness cost which encourages adjacent superpixels
with similar color features to have similar saliency values to
each other. N (pi) is the set of the adjacent superpixels to pi.
The weight is defined as wpi,pj

= exp
(
−20‖c(pi)− c(pj)‖

)
.

The last term represents a temporal smoothness cost for
temporal coherency of saliency distribution, where temporal
neighboring superpixels with similar colors are assigned sim-
ilar saliency values. qi denotes the superpixel in It−1 closest
to pi ∈ It. Fig. 3(i) shows the final saliency distribution
where the initially computed saliency values of the background
superpixels in Φt are further suppressed.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm
using the two datasets: VideoSeg [29] and SegTrack [28]. The
VideoSeg is composed of 10 videos which include large fore-
ground objects with high feature contrast, and the SegTrack
is composed of 6 videos exhibiting relatively small objects
with various motion characteristics. As did in [14], we do not
include the ‘penguin’ in the SegTrack for experiments, since
the provided ground truth saliency maps are not plausible.
Also, we remove the frames at the boundaries of the ‘cheetah’
and ‘monkeydog’ in SegTrack. We compare the performance
of the proposed algorithm qualitatively and quantitatively with
that of the six video saliency detection methods: LSD [17],
DCMR [10], RSF [16], UW [11], SP [12] and RWRV [19],
using the source codes from the authors’ websites.
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Fig. 4: Comparison of the resulting saliency maps. The first five videos are from the SegTrack [28], and the other five videos
are from the VideoSeg [29]. The last column shows the ground truth (GT) saliency maps.

Fig. 4 compares the resulting saliency maps obtained by
the proposed algorithm and the existing methods. LSD and
DCMR rarely detect the salient objects. RSF tends to highlight
the background regions significantly. UW finds overall areas
of salient objects but fails to extract the whole salient objects
completely. SP integrates the spatial and temporal saliency
maps adaptively, and provides relatively good performance
as shown in ‘parachute’ and ‘girl’ sequences. However, it
often results in smoke effects around the salient objects, and
it also detects some background regions as salient as shown
in ‘monkeydog’ and ‘VWC102T’ sequences. RWRV tends to
highlight the boundaries of salient objects. It also blurs the
saliency maps and captures lots of background regions to
be salient, as shown in ‘birdfall,’ ‘girl,’ and ‘DO30 013’ se-

quences. Prop.-F and Prop.-S show the maps of the combined
feature contrast in (4) and the final saliency maps obtained by
the proposed algorithm, respectively. We see that the proposed
feature extraction catches the salient objects reliably on most
sequences, even when a salient object exhibits various colors
as shown in ‘cheetah,’ ‘girl,’ and ‘DO01 055’ sequences.
Prop.-F also highlights local background regions surrounding
the salient objects. However, Prop.-S successfully suppresses
these artifacts by local saliency evaluation. In particular, Prop.-
S clearly highlights the saliency objects in the ‘BR128T’ and
‘DO01 013’ which exhibit little motion features of salient
objects. Fig. 5 provides the quantitative comparison results
in terms of precision, recall and F-measure score that are
evaluated by comparing the ground truth saliency maps and
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(a)

(b)

Fig. 5: Quantitative comparison of saliency detection algorithms in terms of the precision, recall, and F-measure score. (a)
SegTrack [28] and (b) VideoSeg [29].

the resulting saliency maps which are binarized with various
thresholds from 0 to 255 [30]. We see that the proposed
algorithm yields the best performance compared with the six
existing methods in most of the thresholds.

V. CONCLUSION

In this paper, we proposed a novel saliency detection
algorithm for videos. We combined the color and motion
feature contrast adaptively according to their confidence at
each frame. We locally constrained the searching area for
saliency detection, and evaluated saliency values using a
relative feature distance with respect to the salient object and
its local background. Experimental results demonstrated that
the proposed algorithm detects the video saliency faithfully
and yields a better performance than the existing state-of-the-
art methods.
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