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Abstract— When making repeated decisions, individuals can 
learn about associations between actions and outcomes through 
obtained feedbacks. Such a learning process can occur based on 
individuals’ direct experiences in the past, or simply on observed 
social others’ actions and outcomes. Previous computational and 
neuroimaging studies have shown that one’s learning 
performance is dependent on her sensitivity to reward (or 
punishment) and reward prediction error, the differences 
between experienced and expected rewards (or punishments). 
However, it remains unknown whether individuals’ experience-
based and observational learning have common or differential 
cognitive characteristics (e.g., value sensitivity) that affect the 
learning performances. Here, we use a probabilistic reward 
learning task, a choice task with different types of uncertainty, 
and computational modeling approach to quantify individuals’ 
value sensitivity and learning performances. We further examine 
associations between performances in observational- and 
experience-based learnings with individuals’ psychopathological 
symptoms. Particularly, depression, a most prevalent symptom 
in modern society and known factor that affects reward 
sensitivity, is used as a psychopathological measure of interest. 
The current study contributes to understanding how individuals’ 
psychopathological symptoms affect their experience-based and 
observational reward learning.  

I. INTRODUCTION 

     Most human decisions are made about, among, and for 
social others [1]. Given the abundant opportunities to achieve 
information by observing social others, one does not always 
have to experience the consequences of choices by oneself to 
learn which choice is more beneficial [2-4]. Such 
“observational learning” of the association between choices 
and outcomes allows observers to update their knowledge 
about the environment in an indirect manner. It is well known 
that individuals’ reward learning performances are dependent 
on their sensitivity to reward values and to prediction errors 
reflecting whether the reward was better or worse than they 
expected [5]. Although neuroimaging studies have shown that 
similar brain regions are involved in learning of information 
observed from social others [1, 6, 7], it still remains unknown 
to what extent individuals’ characteristics (e.g., value 
sensitivity) are shared between reward learning and 
observational learning. For example, individuals who have 
high confidence about their own experience-based valuation 

may not use information they achieved from external sources 
(e.g., social others). Here, we conducted one reward learning 
task and one non-learning task where both of the tasks 
involved a series of choices between options with uncertain 
outcomes, and used model-based analytic approach to 
examine inter- and intra- task individual differences in 
valuation and learning. Specifically, choice patterns in a non-
learning task were used to characterize individuals’ 
preference and value sensitivities that were compared against 
their learning performances in a learning task where 
participants had chances to learn from both their own choice-
outcome experiences and observation of social others’ choices. 
     Previous studies have found that individuals’ subjective 
valuation and learning are associated with their 
psychopathological symptoms. In particular, depressive 
symptom are known to be associated with one’s diminished 
behavioral and neural reward responses [8-13]. A recent study, 
however, showed that individuals with major depression have 
intact value processing in a non-learning environment [14]. 
Because the study did not examine participants’ reward 
learning and responses, it could be only inferred that impaired 
reward responses in major depression may be specific to a 
learning environment (c.f., [15]). In the current study, we used 
a within-subject design across learning and non-learning tasks, 
and tested the association between individuals’ depressive 
symptoms and their estimated cognitive characteristics both in 
learning and non-learning environments. 

II. METHODS 

A. Participants 
32 individuals (male/female = 21/11, age = 22.41±2.33) 

participated in the current study. All participants provided 
written informed consent. The study was approved by the 
Institutional Review Boards of Ulsan National Institute of 
Science and Technology. Two participants were excluded 
from data analyses due to experimenter error, and eight 
participants were excluded due to their low performance 
(around 50% accuracy in one of the three conditions). After 
exclusion, data from 22 participants were included for the 
final analyses (male/female = 14/8, age = 22.55±2.24). 
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B. Experimental Procedures 
Two behavioral decision-making tasks were used. One task 

involved observational and experience-based reward learning 
where participants had to learn which of the two given options 
is better (‘learning task’ hereafter) [3]. During the other task, 
participants had to make a series of choices between two 
certain or uncertain options (‘uncertainty task’ hereafter) [16]. 
There was no feedback provided of their choices, and 
therefore the task did not involve any learning processes.  

 
Uncertainty Task 

Due to the potential learning effect affecting participants’ 
behavioral patterns, all participants performed the uncertainty 
task on the first visit. During the task, participants were asked 
to make a series of choices between two gambles that have 
different types of uncertainty [16]. Three different types of 
uncertainty were introduced; risk where outcome values and 
corresponding probabilities were known [17], ambiguity 
where outcome values were known but probabilities were 
unknown [18], and vagueness where only the range of 
outcome value was known (i.e., outcome value information is 
partially omitted). To investigate how individuals subjectively 
value choices with these types of uncertainty, participants 
made choices between two gambles on each trial that were a 
combination of two of the four gamble types: certain gambles, 
risky gambles, ambiguous gambles, and vague gambles. 
There was one session where all outcome values were gains 
and another session where all outcome values were losses. 
Order of the sessions were counterbalanced and participants 
were paid at the end of the study, based on the outcome of a 
random single gamble drown from all the choices the 
participant made in each session.  See Ref [16] for details of 
the task. 

 
Learning Task 

Our learning task was adapted from a previous study in 
observational learning [3]. Participants went through a 
training session on their first visit after they performed the 
uncertainty task. This allowed participants to get familiar with 
the task structure. During the task, participants were asked to 
learn the reward structure of various sets of fractal images. 
Each set of images consisted of two options where one option 
is always better than the other (more likely to give better 
outcome). In the current task, the better option had 80% 
chance of good outcome (+10 points in gain sessions and 0 
points in loss sessions) and 20% chance of bad outcome (0 
points in gain sessions and –10 points in loss sessions). On 
the contrary, the worse option had 80% chance of bad 
outcome and 20% chance of good outcome. Each trial 
consisted of “Observation stage” where participants get to 
observe one of the previous participants’ behavioral choices 
on the same set of images, and “Action stage” where 
participants make a choice. As per Ref [3], there were three 
different conditions where each condition provided different 
amount of information in observation stage. The first 
condition (“Individual learning”) did not reveal neither the 
other participant’s action nor choice outcome. The second 

condition (“Action only”) revealed only the choice the other 
participant made, and the third condition (“Action + 
Outcome”) revealed both the choice and the outcome of the 
other participant experienced within the same set of images. 
Three types of conditions were intermixed. Note that each 
type of condition was associated with different set of fractal 
images, so that participants had to learn the outcome 
associations separately. In total, there were 3 gain and 3 loss 
sessions where each of the session had three different types of 
condition (individual learning, action only, and action + 
outcome). Gain and loss sessions alternated, and participants 
were notified which type of session it is at the beginning of 
each session.  

C. Computational model 
We constructed computational models for each task and 

estimated individual parameters that characterize each 
individual’s valuation and learning performances.  

 
Uncertainty Task 

To formally incorporate preferences over different types of 
uncertainty, we drew upon expected utility theory [17] and 
modern portfolio theory (mean-variance framework, [19]), 
and constructed a subjective value function [16] that includes 
i) risk preference, ii) ambiguity aversion, iii) vagueness value 
weight (level of optimistic valuation for a range of vague 
outcome), iv) vagueness dispersion preference (preference for 
the level of vagueness), and v) sensitivity to subjective value 
differences between options. The Softmax choice rule was 
used to analyze individual subjective values of gambles with 
individuals’ choices.  

 
Learning Task 

Learning model adapted a basic Q learning algorithm [3, 
20]. Briefly, the model assumes that each participant 
calculates expected values of choosing option 1 or 2, which 
are referred as Q-values. After making a choice based on the 
Q-values on each trial, participants receive a feedback where 
they can calculate how much better (or worse) the option was 
than their expectation, i.e., prediction error. This error is used 
for updating the Q-value, so that one can have a better 
expectation of choosing the option. The extent to which one 
updates the Q-value based on the prediction error is defined as 
learning rate. In the current study, our learning model for 
participants’ own experience (i.e., Action stage) follows the 
same logic as explained above. Note that we included two 
separate learning rates for gain and loss sessions, so that we 
can examine potential differential responses between gains 
and losses. We modified the suggested model from Ref [3] for 
Observation stage, because model-agnostic analysis results 
(see below) showed that participants did not improve more 
from only observing the other participant’s action (Action 
only condition). With the modification, our learning model 
included two additional learning rates, each for learning from 
the observee’s reward prediction error in gain and loss 
sessions. As in the Uncertainty Task, the Softmax choice rule 
was used.  
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III. RESULTS 

A. Model-agnostic analysis 
Percentage of correct choice (i.e., better option) was 

calculated to first depict their learning across the task (Fig. 1). 
From the early stage of the task, in both gain and loss sessions, 
individuals showed higher accuracy in Action + Outcome 
condition (red) compared with that in Individual learning 
condition (black). In contrast to the previous study [3], 
individuals did not show improved accuracy in Action only 
condition (blue) (Fig. 1). In gain sessions, total points 
individuals earned were significantly higher in Action + 
Outcome condition than other two conditions. Although 
trending, loss sessions showed a comparable pattern. These 
results indicate that individuals successfully used social 
others’ experience (observed choices and results of social 
others) to learn expected values of the options. 
 

 
Figure 1. Model-agnostic results of learning performances. Individuals 
showed relatively faster learning performance in Action + Outcome condition 
compared with other conditions. Error bars represent standard error of the 
mean; Dotted lines represent 50% accuracy. 

 

B. Model-based analysis 
Individual parameters included in the suggested 

computational model were estimated using hierarchical 
Bayesian estimation [21, 22]. As described in the methods 
section, four learning rate parameters per individual were 
estimated, separately defining for gain and loss sessions, and 
for Individual learning and Observed learning (Action +  
 

 
Figure 2. Model-based learning rates for individual and observation-
based learning. Individuals showed higher learning rates for observation-
based learning (observe) compared with experience-based learning (self) 
(repeated measures ANOVA, F(3, 63)=7.61, P = 0.00020). Particularly, the 
trend was more significant in loss sessions (post-hoc paired t-test, t(21)=-2.46, 
P = 0.023). Regardless of how individuals learned (self or observe), they 
showed larger learning rates in loss than gain sessions (post-hoc paired t-test; 
self: t(21) = -2.04, P = 0.055; observe: t(21)=-3.65, P = 0.0015). Error bars 
represent standard error of the mean; *P<0.05, **P<0.01. 

 
Outcome) conditions. On average, individuals showed larger 
learning rates for loss sessions than for gain sessions (Fig. 2), 
indicating that they were more responsive to losses [23]. 
Between conditions, participants showed larger learning rates 
where they observed others (Fig. 2). This pattern was more 
apparent in loss sessions. These results suggested that on 
average, individuals were using others’ positive and negative 
experiences more than they use their own experiences. 

To examine individual differences in observational learning, 
we calculated correlation coefficients between individual 
parameters. Individuals who showed higher value sensitivity 
(i.e., larger inverse temperature) showed larger learning rates 
in Individual learning condition, regardless of gain or loss 
sessions (Fig. 3, upper). Those who learned the fastest from 
their own experiences (high learning rate in Individual 
learning) showed the slowest learning rate for observed 
experiences (Fig. 3, lower). These results are consistent with 
our expectation that individuals who put larger weight on the 
information they experienced themselves place smaller weight 
on the information achieved from social others.  

 

 
Figure 3. Inter-parameter associations. Participants who had higher value 
sensitivity (larger inverse temperature) showed larger learning rates in both 
gain (Pearson’s correlation r = 0.73, P = 1.16e-04) in loss (Pearson’s 
correlation r = 0.52, P = 0.013) sessions. In loss sessions, individuals who had 
larger learning rates in Individual learning had smaller learning rate for 
observation-based learning (Pearson’s correlation r = -0.45, P = 0.037). Each 
point represents an individual participant. Red lines show significant 
regression results, and a grey line shows a non-significant regression result. 

 
To examine whether individual characteristics in cognitive 

process for non-learning environment explain individuals’ 
learning performances, we examined associations between 
risk preference (signed sensitivity to reward variance) and 

— Action + Outcome
— Action
— Individual learning

0

100

Pe
rc

en
ta

ge
 

co
rre

ct
 c

ho
ic

e

Trials Trials

0

100
Gain Loss

1 15 510 10

0

0.08

Gain

Le
ar

ni
ng

 ra
te

0

0.08

Self Observe
Loss

Self Observe

*
**

0.02 0.1 0.02 0.1
0.03

0.12

0.03

0.12

Learning rate
self, gain

Learning rate
self, loss

Le
ar

ni
ng

 ra
te

ob
se

rv
e,

 g
ai

n

Le
ar

ni
ng

 ra
te

ob
se

rv
e,

 lo
ss

2.8 4.6 2.8 4.6
0.02

0.10

0.02

0.10

Inverse 
temperature

Inverse 
temperature

Le
ar

ni
ng

 ra
te

se
lf,

 g
ai

n

Le
ar

ni
ng

 ra
te

se
lf,

 lo
ss

485

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



learning rates. Individuals who were most averse to risk 
during Uncertainty task showed the largest learning rate in 
gain sessions (Fig. 4). However, individuals’ behavioral 
patterns in loss session learning task was not associated with 
their risk preference for gambles with potential losses. These 
results suggest that there may be additional process that 
modulates individuals’ learning pattern above and beyond 
their general decision-making tendency (risk preference in 
non-learning environment).  
 

 
Figure 4. Relationship between individuals’ risk preference and learning 
rates. In gain sessions, individuals who are risk averse (negative value on x-
axis) showed larger learning rate (Pearson’s correlation r = -0.59, P = 0.0041). 
No such relationship was found in loss sessions. Each point represents an 
individual participant. Red and grey lines show significant and non-
significant regression result, respectively. 

 
Individuals’ learning rates, preference for different types of 

uncertainty, and value sensitivity were correlated with self-
reported questionnaire data, including Barrett impulsivity [24], 
Beck Depression Inventory (BDI-II) [25], and Mood and 
Anxiety Symptom Questionnaire (MASQ) [26]. Consistent 
with previous studies [14, 15], we did not find any evidence 
showing that depression symptom impairs individuals’ 
valuation, reward learning, nor observational learning 
performances. The current within-subject design shows that, 
in a behavioral level, individuals’ symptom severity in 
depression is not associated with their subjective valuation 
nor with reward learning performances. 

IV. DISCUSSIONS & CONCLUSIONS 

 
     The current study examined individual differences in 
observational learning and valuation during decision-making 
under uncertainty. Our results replicated that individuals tend 
to learn in faster speed when they use information achieved 
from social others than their experiences. Individual 
differences in non-learning task within gain domain were 
associated with individuals’ learning performances in reward 
learning task. However, this partial association between tasks 
were not observed between individuals’ risk preference and 
learning rate for observational reward learning, which 
provides evidence for differential processes between learning 
from different sources: social (observational) and nonsocial 
(experience-based) information. We did not find any evidence 
showing that mild depression symptom impairing one’s 
valuation nor learning performances. This null finding 
consistent with previous studies again showcases the strength 
of model-based analytics in dissociating multiple factors of 
cognitive process. Future study should follow to understand 

why social information bias exists in learning and from where 
such individual differences originate. 
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