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Abstract— The current neural interface technology opens a new 

window for collecting multi-site streams of the firing activities of 

hundreds of neurons simultaneously. It provokes a need to equip 

with the means to harness as much information as possible from 

such huge amounts of neural data. Deep learning algorithms 

capable of representing latent components in large data may offer 

a means to extract useful information related to specific 

behavioral functions from these neural data. In this study, we 

aimed to decode movement-related information from motor 

cortical neuronal ensembles in a primate while the animal moved 

the arm and hand to perform an eight-target center-out task. The 

previous studies addressed the problem by decoding the velocity 

parameter to reconstruct arm-movement trajectories. However, 

as velocity can be decomposed into speed and direction, it may be 

advantageous to decode each parameter independently. Thus, we 

decoded speed and direction of the hand separately with the long 

short-term memory network (LSTM) to from the ensemble of one 

hundred fifty-eight primary motor cortical neurons. A 

comparison of the suggested LSTM decoder with traditional 

decoders directly predicting the velocity parameter using the 

linear Kalman filter or LSTM demonstrated a significant increase 

in the performance of reconstructing 2D hand trajectory. Our 

results may add accumulating evidence to the employment of deep 

learning algorithms for intracortical brain-machine interfaces 

and suggest that speed and direction can be decoded 

independently. 

I. INTRODUCTION 

Brain machine interfaces (BMIs) convert neural signals 

directly recorded from the brain into intentions such as arm 

movement or grasping. One of the key concerns in the 

development of a BMI is to decode neural signals to extract 

kinematic information related with the movement such as 

velocity, position and speed of the arm. To achieve this goal, 

several algorithms such as population vector algorithm, 

Kalman Filter or optimal linear estimation have been used. 

Recently, new machine learning algorithms such as long short-

term memory (LSTM), which is a nonlinear prediction 

algorithm, have also been examined for neural decoding [1]. 
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When decoding the 2D arm movements from motor cortical 

activity, many decoders have focused on the decoding of 

velocity [2,3,4]. However, 2D velocity can be decomposed into 

speed and direction for point-to-point arm movements. 

Moreover, it was shown that the speed and directional 

information of arm movements were independently encoded in 

the motor cortical neurons by linear regression analysis and 

mutual information measurements [5]. 

Studies have demonstrated that the arm kinematic parameters 

might be encoded nonlinearly in the motor cortical ensemble 

activity. For instance, it was shown that the directional 

information was encoded nonlinearly in the motor cortical 

activity based on the von Mises distribution [6]. Also, Li et al. 

showed that a nonlinear quadratic model could capture the 

neural activity pattern according to the velocity and position of 

arm movements using the nonlinear unscented Kalman filter 

(UKF), better than the linear Kalman filter for BMIs [3]. 

Intuitively, the speed of a point-to-point arm movement 

follows a bell-shaped profile, which possesses intrinsically 

nonlinear characteristics and thus would need to a nonlinear 

model to describe it. 

In these regards, we aimed to decode the speed and direction 

of 2D arm movements separately with nonlinear prediction 

algorithms based on LSTM. The proposed decoder was applied 

 

Fig. 1   Center out task profile. The red dot indicated the center position 

of eight targets. The blue dot at the center indicated the home position. 

The black dashed line represents the reaching trajectory of the monkey 

C. The x and y axis in units of meter. 
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to the publicly available neural and kinematic data set in which 

a primate performed the 2D center-out task. Its performance 

was compared with other decoders, including the linear 

Kalman filter decoding velocity as well as a LSTM decoding 

velocity. Hereafter, we will call the proposed decoder as a 

speed-direction LSTM (sdLSTM) and the previous velocity 

decoding LSTM as vLSTM. 

II. DATA DESCRIPTION 

The public data provided by the Collaborative Research in 

Computational Neuroscience – Data sharing (CRCNS) was 

used to test the proposed decoder [7]. The description of the 

data is given below. 

A rhesus monkey performed the eight-target center-out task, 

where the monkey grasped and moved the two-link 

manipulandum to control the computer cursor. The eight 

targets were placed around a circle with a radius of 10 cm with 

a 45-degree interval. The home position at which the monkey 

started each trial was placed at the center of the circle. In each 

trial, the monkey held the manipulandum at the home position 

with a duration randomly given between 0.5 ~ 0.6s. Then, one 

of the eight targets, which was a square of 2 x 2 cm2, was 

randomly highlighted and the center position became dark. The 

monkey reached the target and held over it for a random period 

between 0.2 s and 0.4 s to complete the trial. The eight targets 

were given equally in a random order. We analyzed the data of 

the first experiment recorded from the monkey C in the data set.  

Fig. 1 shows the arm trajectories of the monkey in the center-

out task. The monkey did not have to reach the target center 

completely because of the target size. The total number of trials 

was 194 among which we only analyzed those in which the 

monkey successfully acquired the target (175 trials). We used 

60 % of the trials for training of the neural decoders and 40 % 

for validation and test (20% each).  

The silicon microelectrode array (96-channel, Blackrock, 

Inc., USA) was implanted within the arm area of the 

contralateral primary motor cortex (M1). The total number of 

recorded neurons were 196. We excluded those neurons which 

seldom fired and caused the singular matrix in the the Kalman 

filter from the analysis, resulting in 158 neurons being used for 

the subsequent analysis. 

III. METHODS 

A. Synchronization of neural data with kinematics  

Fig. 2 shows how the neural data were synchronized with the 

kinematic data at each time instance. We first defined a time 

bin containing neuronal spikes as 50 ms. Then, we counted the 

number of spikes in each bin for each neuron. To predict the 

kinematic parameters at time t, B bin counts for every neuron 

were collectively used, where B was set to 3 in this study. There 

was no overlap between bins. The prediction was conducted 

every 50 ms. 

 

B. Velocity Kalman Filter 

Fig. 3 shows the structure of the velocity Kalman filter. The 

Kalman filter has been used for neural decoding to predict the 

kinematic state variables, such as position, velocity, 

acceleration, from neuronal observations, consisting of the 

prediction and update steps. The prediction step predicts the 

current state with the previous state, and the update step 

corrects the predicted state using a current neuronal 

observation. How much the observation is reflected on to 

update the predicted state is determined by the Kalman gain. 

As the neural decoder, the Kalman filter can be illustrated 

with following equations [2]:  

 

 

Fig. 2   Input schematic for neural decoder. The �̂�𝒕 represents the 

predicted kinematic variable at time t 

 

Fig. 4   The structure of the velocity LSTM 

 

Fig. 3   The structure of the velocity Kalman filter 
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 𝑍𝑘 =  𝐻𝑘𝑋𝑘 +  𝑞𝑘 (1) 

 

 𝑋𝑘+1 =  𝐴𝑘𝑋𝑘 +  𝑤𝑘 (2) 

𝑍𝑘 is the observed bin counts of 158 neurons over 3 bins at 

time k, k-1 an k-2, respectively.𝑋𝑘  is a state variable for the 

velocity of the hand. 𝑞𝑘 is noise assumed to follow the normal 

distribution with zero mean and a covariance matrix 𝑄𝑘. 𝑤𝑘 is 

noise following the normal distribution with zero mean and a 

covariance matrix 𝑊𝑘 . The matrix 𝐴  represents a linear 

dynamics of velocity from time k-1 to k. The matrix H 

represents how the velocity state is encoded in firing activity. 

A, H, W, and Q  were estimated by the least mean square 

solution.  

 

C. vLSTM 

Fig. 4 represents the structure of the velocity LSTM 

(vLSTM). Similar to the velocity Kalman filter, vLSTM 

received neuronal input data from time t-2 to t for predicting 

velocity at time t. Incoming neuronal input was processed in 

the LSTM cell and updated from the previous cell state. It was 

then passed to the LSTM cell of the next time step. After 

processing three consecutive neuronal bin count vectors 

sequentially, the final hidden state was passed to the fully 

connected layer that contained two output units to predict 𝑉𝑡,𝑥 

and 𝑉𝑡,𝑦. The implementation of vLSTM was similar to that in 

the previous study [1]. The weights of the network were 

optimized with the Adam optimizer [8]. Also, the random 

search strategy was used to find an optimal parameter set [9]. 

It was sampled from in the uniform distribution of a range from 

10 to 50 for hidden nodes. The number of epoch varied from 

10 to 100, and the batch size from 10 to 50. 

 

D. sdLSTM 

Fig. 5 represents the structure of sdLSTM, consisting of two 

parts. One part estimated the hand speed and the other 

estimated the hand direction. Each part passed the hidden state 

to the fully connected layer with a single output unit for speed 

estimation or two output units (cosine and sine of an angle) for 

direction estimation. The velocity 𝑉𝑡,𝑥  and 𝑉𝑡,𝑦  were then 

calculated by multiplying speed to a direction vector. We 

estimated a 2D unit-length direction vector constructed by 

cosine and sine functions of an angle instead of a scalar of the 

degree because of the periodicity. Previous studies have also 

built the bidirectional LSTM estimated the protein secondary 

structure [10], or predicted the association angle of protein 

backbone [11], using 2D direction vectors. sdLSTM was 

optimized with the Adam optimizer and the random search 

strategy. The parameter searching range was the same as 

vLSTM. 

To asses the accuracy of decoding, Euclidean distance (ED) 

between decoded and true hand trajectories was calculated:  

 

 

Fig. 6   The example of decoded trajectory. Home position was indicated 
as blue diamond and Target position was indicated as red diamond. The 

region that the trial is regarded as hit trial is shaded as grey. 

 

 

Fig. 7   Euclidean distance of the KF (blue), vLSTM (green), sdLSTM 

(red) in each target direction 

 

Fig. 8 Angular difference of the KF (blue), vLSTM (green), sdLSTM (red) 

in each target direction 

 

Fig. 5   The structure of the sdLSTM 
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 ED =  
1

𝑛
∑ √(𝑝𝑥,𝑖 − �̂�𝑥)2 + (𝑝𝑦,𝑖 − �̂�𝑦)2

𝑛

𝑖=1

 (3) 

In addition, a correlation coefficient (CC) between true and 

reconstructed velocity was calculated. The CC was measured 

on the x-, and y-coordinates, respectively.  

 

 𝐶𝐶 =
∑ (𝑣𝑥,𝑖 − 𝑣𝑥̅̅ ̅)(𝑣𝑦,𝑖 − 𝑣𝑦̅̅ ̅)𝑛

𝑖=1   

√∑ (𝑣𝑥,𝑖 − 𝑣𝑥̅̅ ̅)2𝑛
𝑖=1   √∑ (𝑣𝑦,𝑖 − 𝑣𝑦̅̅ ̅)2𝑛

𝑖=1   
 (4) 

 

   Finally, an angular difference (AD) between the 

reconstructed and true directions were calculated. 

 𝐴𝐷 =  
1

𝑛
∑ 𝜃𝑡

𝑛

𝑡=0

 (5) 

where, 𝜃𝑡 was calculated as. 

 𝜃𝑡 =  cos−1
𝑉𝑡 ∙ �̂�𝑡

|𝑉𝑡| |�̂�𝑡|
 (6) 

𝑉𝑡  and �̂�𝑡  were the velocity vectors recorded and predicted 

from decoding algorithms at time t, respectively. 

IV. RESULTS 

Fig. 6 illustrates the example of the reconstructed and true  

trajectory. In many cases, the reconstructed trajectory by 

sdLSTM could reach the target more frequently than the other 

decoders. The target acquisition rate was 48.125, 43.125 and 

31.875 percentage for sdLSTM, vLSTM, KF. The proposed 

sdLSTM showed the minimum ED on average among the 

decoders (Fig 7). The mean ED was 0.0103, 0.0118, and 0.017 

m for sdLSTM, vLSTM and KF, respectively. Also, sdLSTM 

showed smaller AD than the other decoders on average (Fig 8). 

The mean AD was was 0.6994, 0.9587, and 1.104 rad for 

sdLSTM, vLSTM and KF, respectively. For CC, sdLSTM 

showed poor performance in some directions or similar 

performance in other directions compared with other decoders 

(Fig. 9). The mean CC for the x-velocity was was 0.755, 0.813, 

and 0.8047  for sdLSTM, vLSTM and KF, respectively. The 

mean CC for the y-velocity was was 0.8458, 0.9036, and 

0.8316  for sdLSTM, vLSTM and KF, respectively. However, 

the target direction that elicited poor CC of sdLSTM did not 

affect reaching movements much. For example, reaching a 

target at -90 and 90 degrees entailed little movement along the 

direction of the x-axis. In the same way, reaching a target at 0 

degree generated little movement along the y-axis. Therefore, 

sdLSTM that separately estimated speed naturally exhibited 

less correlations in these angles.  

V. CONCLUSION 

In the present study, we used LSTM to decode hand 

kinematics of a primate from motor cortical activity. LSTM 

was designed in two folds: a unified output predicting 2D hand 

velocity or two separate outputs predicting 2D hand direction 

and speed, respectively. The decoding results demonstrated 

that the LSTM with two separate outputs decoded hand 

kinematics better than the velocity decoding LSTM as well as 

the traditional KF.  

Superior performance of vLSTM over KF suggests that the 

use of nonlinear models with a more complex structure might 

improve neural decoding. However, even with this deep 

learning algorithm, significant gaps between true hand 

kinematics and decoded output exist. Such gaps may not be 

fully overcome by enhancing decoding algorithms per se. 

Rather, it would be also desired to consider the properties of 

hand kinematics and find appropriate ways to associate them 

with decoding algorithms. This study shows that changing the 

way to cast kinematic parameters in a decoding algorithm could 

improve performance, supporting the argument above. 
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