
A Sketch-based Network Traffic Analysis
Implementation on Commodity OpenFlow Switches

Zong-Cheng Liou†, Chung-Hsiang Cheng†, Theophilus Wellem∗, Ku-Yeh Shih†, and Yu-Kuen Lai†
†Department of Electrical Engineering, ∗Department of Electronic Engineering

Chung Yuan Christian University, Chung-li 32023, Taiwan
Email:{g10379006, g10578017, g10202604, g10678604, ylai}@cycu.edu.tw

Abstract—The paradigm of Software-defined Networking
(SDN) provides excellent flexibility where the traffic monitoring
applications can be implemented in the SDN controller. The
objective of this work is to develop a software implementation of
a Sketch-based network traffic analysis system on commodity
OpenFlow switches. A sketch data structure is implemented
inside the Open vSwitch as the extra table to collect flow statistics.
The OpenFlow protocol is extended to support sketch request
and reply messages such that the controller can collect the
sketch data structure from the switches. The implementation of
heavy-change detection is provided to showcase the flexibility
of this implementation. Performance evaluations are conducted
with real-world network traffic traces. The system is capable of
finding flows with significant volume changes above a predefined
threshold.

Index Terms—Software-defined networking; Change detection;
OpenFlow switch.

I. INTRODUCTION

Software-defined networking (SDN) is an emerging network
architecture [1] that decouples the network control plane
from the data plane. The control plane is typically located
in a commodity server, known as the SDN controller. The
controller communicates with the network devices in the data
plane using an open interface such as OpenFlow protocol.
The SDN paradigm has enabled a new era of software-defined
traffic monitoring that can provide flexible flow-based traffic
measurement [2]–[4]. Applications (e.g., an anomaly detector)
running in the SDN controller can dynamically modify the
rules of flows to be monitored based on the network status and
policy set by the administrator. Furthermore, software-defined
traffic monitoring has the potential to enable concurrent and
dynamically instantiated network measurement tasks [5].

In a typical OpenFlow-based SDN architecture, the ope-
ration of a monitoring application relies on the support of
flow entries in the flow tables. The application obtains the
flow statistic counters from switches and processes the data
using sophisticated algorithms and statistical methods. This
type of applications, utilizing the flow statistics gathered from
the switch’s flow table, is widely used in the deployment of
SDN-based network traffic monitoring [6], [7].

However, the capability of traffic monitoring, relying on
the flow entries in the flow table of the commodity hardware
OpenFlow switches, is limited by the TCAM size. Typically,
wildcard rules are installed in the TCAM along with the for-
warding rules by the controller for traffic monitoring purpose

[8]. Flow monitoring rules, often defined at different granu-
larity [9], may also interfere with forwarding rules already
presented in the switches. Moreover, the main purpose of the
TCAM in OpenFlow switch is to store the rules for forwarding
traffic, not for monitoring purpose. Therefore, the monitoring
capabilities are neither flexible nor scalable.

One approach to resolve the issues is to decouple the
monitoring task from the use of the flow table. This can be
achieved by adding an extra table or data structure in the data
plane for monitoring and measurement tasks. Examples of this
approach can be found in the OpenSketch [2] and UnivMon
[10] that utilize sketch data structure in the data plane. Another
work [11] uses Bloom filters to select flows to be measured
and determine the action to be executed on matched flows. In
[12], the Count-Min sketch [13] is put inside an FPGA-based
OpenFlow switch for heavy hitter detection.

In this paper, we first present the typical implementation of
sketch-based traffic change detection by collecting the flow
statistics periodically from the commodity hardware Open-
Flow switches. Then, the In-switch Sketch implementation in
an Open vSwitch [14] are discussed. The sketch is implemen-
ted inside the switch as the extra table to collect flow statistics.
A controller can retrieve the sketch data structure by using the
OpenFlow protocol. We have modified the OpenFlow protocol
to support sketch request and reply messages such that the con-
troller can collect the sketch data structure from the switches.
After receiving the sketch, the monitoring application can use
the sketch for traffic change detection.

The main contributions of this work are as follows.

• We design and implement a sketch-based traffic change
detection system in SDN using commodity hardware
OpenFlow switches. Furthermore, analysis on factors that
influence the detection accuracy is presented.

• The implementation of sketch data structure in an
Open vSwitch supporting traffic monitoring is developed.
OpenFlow protocol is extended with messages to handle
the sketch data processing between switches and the
controller.

The remainder of this paper is organized as follows. Open-
Flow, SDN traffic monitoring, and sketch-based change de-
tection are introduced in Section II. Section III describes the
typical and the in-switch sketch system implementation. The
system evaluation and discussion of the experiment results

459

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

are presented in Section IV. Finally, Section V concludes this
paper with future works provided.

II. BACKGROUND AND RELATED WORK

A. OpenFlow and SDN traffic monitoring

The typical OpenFlow approach for traffic monitoring is to
use the flow statistics recorded in the switch’s flow table. The
mechanism to obtain the flow statistics can be either active
or passive. In active mode, the controller sends the request
message to the switch and the switch responds by sending the
flow statistics reply message back to the controller. In passive
mode, the controller waits for the messages sent by the switch.
When flow entries with special flag have expired (timeout),
the switch notifies the controller on removing the flow entries.
Then, the controller can obtain the statistics of the flow entries
to be removed. The controller is responsible to install flow
entries with special flag in the switch beforehand.

Scalability challenges for network monitoring applications
in SDN are discussed [4] [15]. These challenges, consisting
of limited TCAM size and limited CPU capacity processing
the statistics inside the switch [16] affect the quality of
measurement with inconsistent and inaccurate results.

Based on the OpenFlow specification, presenting the Open-
Flow logical switch requirements and the OpenFlow protocol,
the switch has stateless data plane and uses match-action ab-
straction. The drawback of OpenFlow for network monitoring
is due to its stateless data plane that prevents implementation
of data plane algorithms [15]. Applications must rely on the
controller for stateful operations. Therefore, several researches
[17], [18] on stateful SDN data plane and monitoring are
proposed. Stateful monitoring solutions such as OpenSketch
and UnivMon proposed the usage of sketch data structure
as the monitoring primitive on the data plane. Therefore,
extra memory space is dedicated for the monitoring tasks,
specifically for data collecting and pre-processing.

Research works such as UMON [19] and SDN-Mon [20]
are proposed to decouple the operations of monitoring from
forwarding without mutual interference. In UMON, a separate
monitoring flow table is used to store the monitoring rules.
SDN-Mon is an SDN-based monitoring framework that decou-
ples monitoring from forwarding table. It allows the controller
to define a set of monitoring match fields based on the
requirements. The monitoring fields are stored in another table
and a Bloom filter is used to determine whether the monitoring
table should be checked and updated during processing the
network traffic.

The work presented in this paper follows the forwarding-
monitoring decouple paradigm and sketch is used as the
monitoring primitive.

B. Heavy change detection

The goal of heavy change detection is to identify flows with
significant changes in size (packet counts) or volume (byte
counts) above a predefined threshold of the total traffic over
several consecutive observation intervals. These flows are also
known as heavy changers. Let At = a1, a2, . . . be the input

packet stream in observation interval t. Each packet ai is
associated with a key k and an updated value v. Following
the algorithm in [21], the source IP address and packet length
are used as the key and the updated value, respectively. The
algorithm uses k-ary sketch, which is an array of counters S
with H rows and K columns. H hash functions are used,
where each row is associated with a hash function. Let So (t)
is the sketch that accumulate the byte counts in t and Sf (t) is
the forecast sketch computed using a forecasting model (e.g.,
moving average). The forecast error sketch is then computed
as Se (t) = So (t) − Sf (t). A threshold alarm TA is chosen
based on the estimated second moment of the forecast error
sketch and a threshold parameter T determined by application
(TA = T ×

√
EstF2 (Se (t))). The change detection task is

to find all keys (source IP addresses) whose volume, queried
from Se (t), is above TA.

III. SYSTEM IMPLEMENTATION

A. Typical Implementation

The change detection application is implemented and execu-
ted in the controller following the typical OpenFlow approach
for traffic monitoring1. Two configurations of standard and
parallel are used for the traffic change detection to utilize all
of the hardware resources (flow tables, memories) available
on the switches. In the standard configuration, only one
switch is used and the controller sends request to the switch
periodically to obtain the flow statistics. After receiving the
flow table entries, the application updates its sketch data
structure, computes the threshold, and executes the change
detection algorithm. The bottleneck in this configuration is
in the CPU capacity and the TCAM size of the switch. If
the traffic is too large, the switch is not able to process
the traffic and produces inaccurate detection result. To solve
this problem, parallel configuration is used, in which multiple
switches work together. This configuration improves the de-
tection accuracy because more flow statistics can be utilized
by the change detection process. The parallel configuration
maximizes the hardware resource usage in multiple switches.
In this configuration, the traffic is distributed to all of the
switches such that each switch only needs to process a part
of the traffic, thereby reducing the switch’s CPU load. The
distribution mechanism is done using wildcard rules according
to network prefix. With wildcard rules, match can be done on
larger set of fields. The system can insert predefined wildcard
rules and actions such that the traffic will be directed to
each switch in parallel configuration. Commodity hardware
OpenFlow switch and Floodlight OpenFlow controller [22] are
used in the implementation.

The change detection system, consisting of statistics re-
quester module, change detection module, record module,
and accuracy calculation module is shown in Fig. 2. The
monitoring process starts when the connected switches are
initialized and allocated according to the configuration selected

1We refer this implementation as the “typical implementation” throughout
this paper.

460

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

������������������
������������������
������������������
������������������

����������
����������

�����������
�����������

- Traffic change detection application run on the controller .
- Switch: Edge-Core AS4610-30T

Host 1
(Traffic generator)

Standard Mode

������������������
������������������
������������������
������������������

�����������
�����������

�����������
�����������

Parallel Mode

Switch 1

Switch 2

Floodlight
controller

Floodlight
controller

Switch

Host 2
(Traffic capture)

Switch 3

Host 1
(Traffic generator)

Host 2
(Traffic capture)

Fig. 1. Configurations of the traffic change detection system.

(standard or parallel). The system then waits for the end
of the observation interval. When the observation interval
ends, it instructs the statistics requester module to send the
flow statistics request message and obtain the flow statistics
from all switches. After obtaining the flow statistics, the
data are processed according to the administrator settings.
The flow statistics are used to update the sketch inside the
change detection module. The change detection module is
then called to update the sketch and performs the change
detection process. The source IP address and byte counts
are used as the key and the updated value for the sketch.
The change detection module implements the sketch-based
change detection algorithm based on [21]. It creates the
observed sketch So (t) in each observation interval, calculates
the forecast sketch Sf (t), forecast error sketch Se (t), and then
determine the alarm threshold TA. The forecast error sketch
Se (t) is queried to determine whether a source IP address is a
heavy changer. If the estimated value for a source IP address
returned by the query to Se (t) is larger than a threshold TA,
then the source IP address is added to a list by the record
module. The controller can use this information to instruct the
switch to drop the heavy changers. The accuracy calculation
module then calculates the accuracy of the change detection
and presents the results to the system administrator.

B. In-switch Sketch Implementation

The detection accuracy in the typical OpenFlow approach
for traffic monitoring is limited by the TCAM size that
collects the flow statistics. Even by utilizing several switches in
parallel such that the change detection system can obtain more
statistics, the scalability and flexibility are still the problems
to be solved. Therefore, as shown in Fig. 3, we proposed an
alternative implementation by using the sketch data structure
as a monitoring primitive inside the Open vSwitch. This
implementation also reduces the controller workload since the

Statistics Requester
module: Sends request
to switch to obtain flow
statistics.

Monitoring application
(Change detection)
on the controller

Change detection
module: Updates sketch
using the statistics from
switch, and executes
change detection
algorithm .

Record module: Stores
all heavy change flows

Accuracy calculation
module: Measures the
detection accuracy .

Interval end

Wait for next interval

Fig. 2. Change detection system workflow.

������������������
������������������
������������������
������������������

������������������
������������������
������������������

Application

Ryu controller

OpenFlow

ovs-vswitchd

Open
vSwitch

Sketch Table

datapath + DPDK driver

Network interface

header

(a) (b)

sketch []

10
24

 e
nt

rie
s

32 bits 32 bits

header

keys []

(c)

Fig. 3. (a) Sketch in switch+DPDK architecture. (b) OFPT SKETCH REPLY
message format. (c) Key list.

sketch update operation is done in the switch. The controller
only needs to collect the sketch data structure from switches
and perform the operations of change detection.

To collect the sketch from a switch to the controller, the
OpenFlow 1.0 protocol is extended with two new messages of
OFPT SKETCH REQUEST and OFPT SKETCH REPLY.
The first message is sent by the controller to a switch re-
questing the sketch. The reply message is used by a switch
to transport the sketch table back to the controller. Fig.
3(b) shows the OFPT SKETCH REPLY message structure.
During operation, at the end of each observation interval, the
controller sends the OFPT SKETCH REQUEST message to
the switch and then wait for the OFPT SKETCH REPLY
message. On the switch side, if the switch receives such
request, it sends back the OFPT SKETCH REPLY messages
contains the sketch table to controller. The communication
flows between a controller and a switch is shown in Fig. 4.

A list of the flow key (i.e., the source IP address, destination
IP address, 5-tuple, etc.) is also sent to the controller along
with sketch reply message. The key is required to query the
sketch for heavy changers.

In an observation interval, the number of keys can be
enormous. As an example, in a 30 seconds interval, the number

461

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

Interval end

Send Request message

Wait for Reply message

Receive
Reply message?

No

Process data and /or
execute measurement

task

Controller

Wait for
Request message

Receive
Request message?

No

Read data from Sketch
table and construct

Reply message

Switch

Yes

Send Reply message to
Controller

Yes

Fig. 4. Controller and switch message exchange flow.

of distinct source IP addresses in the trace that is used in our
experiments is around 9,600. The total size of all these keys
is 37.5 KBytes.

Typically, not all of the keys are needed. This is because
we only interested in suspicious keys that are the heavy
changers. In the proposed system, either limited number of
keys or all keys can be sent to the controller. In the current
implementation, the number of keys sent to the controller
is limited to only 1,024. Sampling and filtering mechanism
can be applied to select only the potential heavy changers so
that a limited number of keys can be sent. For example, a
simple filtering can be utilized to avoid duplicated keys after
sampling. On the other hand, if all keys are required to be sent
to the controller, multipart messages can be used. Carrying
only a small number of keys can yield inaccurate detection
results. Therefore, the strategy of keys selection is needed to
avoid low accuracy detection results.

IV. EVALUATION

The evaluation of the typical implementation is presented
first followed by the in-switch sketch implementation.

A. Performance of the Typical Implementation

The test-bed, for the evaluation of the typical implementa-
tion, consists of a Floodlight controller and several hardware
OpenFlow switches (Edge-Core AS4610-30T). The 15-minute
MAWI network traffic traces [23], shown in Table I, are used
for the evaluation. The trace is a part of 24h-long trace in the
transit link of WIDE to the upstream ISP that is collected at
MAWI’s samplepoint-F. Figure 1 presents several configura-
tions of change detection. The standard mode, parallel mode,
and sampling mode are evaluated in the experiment.

The observation interval is 30 seconds. The depth (K) and
width (H) of the sketch are set as H = 5 and K = 216

in all experiments. The false negative rate (FNR) and false
positive rate (FPR) are used as accuracy metrics of the change
detection. The FNR is defined as the unidentified heavy
changers and the FPR is the non heavy changer that are
incorrectly identified as heavy changers.

TABLE I
THE INFORMATION OF NETWORK TRAFFIC TRACES [23] USED IN THE

EVALUATION.

Trace name 200701011400 200901091400
of packets 6,948,502 20,518,350
of distinct srcIP address 79,823 149,679
of distinct srcIP (30s interval) 9,638 (avg.) 14,688 (avg.)

TABLE II
DETECTION ERROR RATE IN DIFFERENT CONFIGURATIONS [24].

Trace/Mode Standard Parallel Sampling
Trace 1: FNR 24.18% 6.35% 32.79%

200701011400 FPR 0.54% 0.19% 0.80%
Trace 2: FNR 31.42% 19.64% 42.14%

200901091400 FPR 0.45% 0.28% 0.72%

B. Experimental Results and Discussion

The experimental results are shown in Table II. Trace 1
has lower FNR than Trace 2 in all modes. This is because
Trace 2 has nearly twice the number of distinct source IP
addresses than those in Trace 1. Because of the limited switch
processing capability and resources, a large number of distinct
source IP addresses cannot be processed. The switch loses
some flows and makes the system unable to detect the heavy
changers accurately. The FPR in all modes is roughly below
1%. Based on the observation in all experiments, the main
factor that influences the FNR is the table capacity to handle
the traffic. On the other hand, the FPR is affected by the
sketch’s depth H and width K. These parameters determine
the amount of memory used by the sketch. The parallel mode
is superior to the standard mode because in parallel mode,
hardware resources of multiple switches are used. The system
is able to process more flows. The sampling approach is
also implemented for comparison purpose. In this approach,
packets are sampled before being updated in the sketch. The
sampling rate is chosen based on the recommended sampling
rate [25]. The sampling rates for Trace 1 and Trace 2 are 1/300
and 1/550, respectively. The experimental results showed that
the proposed system is superior compared to the sampling
approach. As shown in Table II, the FNR of the sampling
approach increased as the traffic size increased.

To understand the relationship between the capacity of
the hardware switch and the change detection accuracy, ex-
periments using standard mode and different IdleTimeOut
values are conducted. Trace 1 is used in the experiments and
the observation interval is set to 30 seconds. A commodity
hardware OpenFlow switch has a limited CPU capacity and
TCAM size. If there are too many flows need to be forward
to the controller, the switch’s CPU loading increase and traffic
can not be processed properly. Limited TCAM size also affects
the change detection accuracy. There are three factors that can
contribute the CPU load as follows.

1) TCAM Capacity: The size of TCAM in the AS4610-30T
switch can store up to 4,096 flow entries. The flow entries will
be allocated in DRAM if more than 4,096 flow rules are used.
Because the DRAM access time is much longer than that of

462

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

the TCAM, the switch CPU spends more time on flow lookup
and matching process causing longer latency.

2) Flow Entry: Removal of a flow entry is determined by
the IdleTimeOut parameter. If the number of flow entries to be
removed is too large, the removal process takes longer time
and increases the CPU load. In the experiments, we found
that when the switch CPU is busy, it cannot remove the flow
entries accurately according to the IdleTimeOut setting. These
flow entries that are still stored in the flow table cause extra
burden to system.

3) Generation of PACKET IN messages: In the system, in-
stallation of flow entries to the switch’s flow table is depend on
the PACKET IN message. If the number of flow entries is too
large, the switch CPU will be busy generating PACKET IN
message, and the switch cannot handle the incoming traffic
properly.

The experiment results are shown in Fig. 5. Four values
are observed in their relation to the IdleTimeOut parameter:
1) Average flow per interval, 2) Distinct source IP loss rate,
3) Byte loss rate, and 4) False negative rate. By obtaining the
average flow per interval, the system is able to to estimate how
many flow entries should be stored in TCAM and DRAM, and
reflects the switch CPU load. In Trace 1, there are 79,823 and
about 9,638 distinct source IP addresses in 15 minutes and
30 seconds interval, respectively. The system uses the number
of PACKET IN messages sent from switch to controller and
compares it with the number of distinct source IP addresses
to estimate how many flow entries it needs to handle. As
shown in Fig. 5, with the increasing of IdleTimeOut, the byte
loss decreases. The reason is that the majority of flows have
their corresponding flow entries in the flow table and the
switch does not have to wait for processing a new flow entry.
Therefore, it can forward the packet directly which makes the
byte loss rate decreases. As the most important indicator of
the system, the FNR has highest value when the IdleTimeOut
is small. The main reason for this is that there is a part of
flow entries has been removed by the switch before the end
of the observation interval, making the detection inaccurate.
In addition, the FNR is low when the IdleTimeOut is set to 60
seconds, and then it show an increasing trend. This is because
the number of flow entries in flow table are too large for the
switch CPU to maintain, hence decreasing the accuracy rate.

In summary, the switch CPU load is influenced mainly by
the flow entries addition/deletion process and the generation
of PACKET IN messages. Maintaining the flow entries that
are not stored in the TCAM is relatively has lower effect to
switch CPU load. By increasing the IdleTimeOut parameter,
the switch has to maintain more flow entries, but reduces
the load to maintain the flow entries addition/deletion and
PACKET IN generation at the same time, resulting in higher
detection accuracy.

C. Performance of the In-switch Sketch Implementation

This implementation is evaluated based on the same MAWI
traces. The network setup in the experiment is shown in Fig.
6. Commodity PCs (Intel Core-i7-2600, 4GB DDR3 DRAM)

 0

 10

 20

 30

 40

 50

 60

 70

5 10 20 30 40 50 60 70 80 90

P
er

ce
nt

ag
e

(%
)

IdleTimeOut (second)

Distinct IP loss rate
Byte loss rate

False negative rate

5 10 20 30 40 50 60 70 80 90
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

N
um

ber of flow
s

Avg. flow per interval

Fig. 5. The performance evaluation results with different IdleTimeOut values
[24].

������������������
������������������
������������������
������������������

����������
����������

����������
����������Ryu controller

Applications run
on controller

Open vSwitch

Host 1

Host 2

Fig. 6. Network setup used in the experiment for in-switch sketch implemen-
tation.

1GbE equipped with 10GbE network interface cards are used
for the Open vSwitch and the controller. The sketch data
structure is implemented in the user-space of the Open vS-
witch. The sketch update process is performed in parallel with
the forwarding path, therefore, the impact on the forwarding
latency and throughput is minimal.

The performance evaluation is focused on the CPU loading
and the traffic overheads between the controller and the Open
vSwitch. The simple switch, provided by the Ryu controller,
is used as the base-line for the comparisons as no sketch
request, reply messages and flow statistics are sent between
the controller and the switch. The traffic overhead between
controller and switch is measured while replaying the MAWI
network traffic trace files.

In the experiment of the Sketch OF approach, the
OFPT SKETCH REQUEST message is sent by the controller
in a 30-second interval to the switch. The controller also
processes the OFPT SKETCH REPLY message sent from the
switch. The size of the sketch and key list is 12 KB (3×1, 024
counters) and 4 KB (1,024 keys), respectively.

In the typical approach, the controller sends request to get
the flow statistics information from the switch at the end of
each 30-second observation interval.

As shown in Table III, the traffic overheads in the typical
implementation are much larger than that of the simple-switch.
This is because in a typical implementation, a large number

463

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

TABLE III
THE INCREASES OF TRAFFIC OVERHEADS BETWEEN THE CONTROLLER

AND OPEN VSWITCH. THE OPERATION OF THE Simple-Switch IS USED AS
THE BASED-LINE FOR COMPARISONS.

Test mode/Trace name 200701011400 200901091400
Sketch OF 17% 35%
Typical Implementation more than 100% more than 100%

TABLE IV
AVERAGE CPU LOADING IN THE OPERATION.

Test mode/Trace name 200701011400 200901091400
Simple Switch 1% 5%
Sketch OF 19% 20%
Typical Implementation 29% 83%

of distinct IP addresses causing many PACKET IN and PAC-
KET OUT messages in the link between the controller and
the switch. The monitoring rules also occupy the space of
the flow table designed originally for the forwarding purpose.
Therefore, the total traffic throughput is affected with high
packet loss rate. Based on the observation in the experiments,
the packet loss rate in the typical implementation can be up
to 73% and 85% for Trace 1 and Trace 2, respectively. On
the other hand, in both simple-switch and Sketch-OF modes,
no packet loss occurs. The operation of Sketch-OF mode is
basically the same as that in the simple-switch mode except
the extra sketch request and reply messages. Therefore, it
does not have too much overhead compared to the typical
implementation as shown in Table III.

The CPU load is measured by using the top command in
Linux. As shown in Table IV, the highest average CPU load
occurs in normal mode. The average CPU loads are 29% and
83% for Trace 1 and Trace 2, respectively.

V. CONCLUSION AND FUTURE WORK

This paper presents an implementation of a sketch-based
traffic change detection system in SDN. The proposed system
can work in commodity hardware OpenFlow switches. The
operations can be performed in a standard mode that uses
only one switch or in a parallel mode that uses more than
one switches to increase the detection accuracy. The imple-
mentation of sketch data structure inside an Open vSwitch
supporting traffic monitoring is developed. The OpenFlow
protocol is extended with new messages to handle the sketch
data processing between switches and the controller.

Evaluation using real network traffic traces are used to
verify the proposed system. The experiment results show that
the proposed system can detect the change in network traffic
more accurate than the sampling approach.

For future work, we plan optimize the system to obtain
higher detection accuracy. A mechanism to select only flows
that have the potential to be the heavy changers will be
developed. Filtering mechanism can be developed for elimi-
nating non-heavy-changer flows to save the switch TCAM
resource. Regarding the in-switch sketch implementation, the
performance of the proposed system can be enhanced by

using the DPDK library [26]. The packet processing flow
can be optimized by using batch processing, huge-pages,
bypassing the OS kernel, and avoiding unnecessary packet
copying in the Linux operating system. Therefore, the time
needed for packets to travel from the network interface to the
CPU is significantly reduced, achieving the wire-speed packet
processing at high speed.

ACKNOWLEDGMENT

This research was funded in part by the Ministry of Science
and Technology, Taiwan, under contract number: MOST 106-
2221-E-033-009 and MOST 105-2632-E-033-049.

REFERENCES

[1] Open Networking Foundation, “Software-Defined Networking: The New
Norm for Networks,” White Paper, 2012.

[2] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
OpenSketch,” in Proceedings of the 10th USENIX Conference on Net-
worked Systems Design and Implementation, ser. NSDI’13. Berkeley,
CA, USA: USENIX Association, 2013, pp. 29–42.

[3] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” in Proceedings of the 11th USENIX
Conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services, ser. Hot-ICE’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 13–18.

[4] M. Moshref, M. Yu, and R. Govindan, “Resource/accuracy tradeoffs
in software-defined measurement,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 73–78.

[5] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dynamic
resource allocation for software-defined measurement,” in Proceedings
of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New
York, NY, USA: ACM, 2014, pp. 419–430.

[6] N. L. M. v. Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in OpenFlow Software-Defined Networks,” in 2014
IEEE Network Operations and Management Symposium (NOMS), May
2014, pp. 1–8.

[7] D. Hamad, K. Yalda, and I. Okumus, “Getting traffic statistics from
network devices in an sdn environment using openflow,” in Information
Technology and Systems (ITaS), Sep. 2015, pp. 7–11.

[8] Y. Zhang, “An adaptive flow counting method for anomaly detection
in SDN,” in Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, ser. CoNEXT ’13. New
York, NY, USA: ACM, 2013, pp. 25–30.

[9] J. SuÃ¡rez-Varela and P. Barlet-Ros, “Towards a NetFlow Implementa-
tion for OpenFlow Software-Defined Networks,” in 2017 29th Interna-
tional Teletraffic Congress (ITC 29), vol. 1, Sep. 2017, pp. 187–195.

[10] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring
with UnivMon,” in Proceedings of the 2016 Conference on
ACM SIGCOMM 2016 Conference, ser. SIGCOMM ’16. New
York, NY, USA: ACM, 2016, pp. 101–114. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934906

[11] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic
monitoring in software defined networks,” in Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 85–90. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620739

[12] T. Wellem, Y.-K. Lai, C.-H. Cheng, Y.-C. Liao, L.-T. Chen, and C.-
Y. Huang, “Implementing a heavy hitter detection on the NetFPGA
OpenFlow switch,” in 2017 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN), Jun. 2017, pp. 1–2.

[13] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, April 2005.

464

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

[14] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and
M. Casado, “The Design and Implementation of Open vSwitch,”
in Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 117–130. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789779

[15] P. Chaignon, K. Lazri, J. Francois, and O. Festor, “Understanding
disruptive monitoring capabilities of programmable networks,” in 2017
IEEE Conference on Network Softwarization (NetSoft), Jul. 2017, pp.
1–6.

[16] L. Hendriks, R. Schmidt, R. Sadre, J. Bezerra, and A. Pras, “Assessing
the quality of flow measurements from openflow devices,” in IFIP IMA,
Sep. 2016, pp. 1–8.

[17] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-aware Data Plane Processing in SDN,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 13–18.

[18] G. Bianchi, M. Bonola, A. Capone, and C. Cascone,
“OpenState: Programming Platform-independent Stateful Openflow
Applications Inside the Switch,” SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 44–51, Apr. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2602204.2602211

[19] A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen,

“UMON: Flexible and Fine Grained Traffic Monitoring in Open
vSwitch,” in Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, ser. CoNEXT ’15. New
York, NY, USA: ACM, 2015, pp. 15:1–15:7. [Online]. Available:
http://doi.acm.org/10.1145/2716281.2836100

[20] X. T. Phan and K. Fukuda, “Sdn-mon: Fine-grained traffic monitoring
framework in software-defined networks,” Journal of Information Pro-
cessing, vol. 25, pp. 182–190, 2017.

[21] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in Proceedings of the
3rd ACM SIGCOMM Conference on Internet Measurement, IMC ’03.
ACM, October 2003, pp. 234–247.

[22] Big Switch Networks, “Floodlight OpenFlow Controller,” 2012.
[Online]. Available: http://www.projectfloodlight.org/floodlight/

[23] MAWI Working Group, “MAWI Working Group Traffic Archive,”
http://mawi.wide.ad.jp.

[24] Zong-cheng Liu, “An implementation and design of heavy change
detection system based on commodity openflow switches,” CYCU, 2016,
MS Thesis.

[25] P. Phaal, “sFlow sampling rates,” 2009. [Online]. Available:
http://blog.sflow.com/2009/06/sampling-rates.html

[26] Intel Corp., “Data Plane Development Kit.” [Online]. Available:
http://www.dpdk.org/

465

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:38-0500
	Preflight Ticket Signature

