
Performance Profiling of Cloud Radio Access
Networks using OpenAirInterface

Po-Chiang Lin1 and Sheng-Lun Huang2
1Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan, R.O.C.

2Department of Communications Engineering, Yuan Ze University, Taoyuan, Taiwan, R.O.C.
Email: pclin@saturn.yzu.edu.tw Tel/Fax: +886-3-4638800 Ext. 7333

Abstract—NGFI, the Next Generation Fronthaul Interface, is
a promising fronthaul interface for the C-RAN (Cloud Radio
Access Network). NGFI is used to connect RCC (Radio Cloud
Center) and RRS (Radio Remote System) in order to avoid
the drawbacks of traditional CPRI (Common Public Radio
Interface). In this paper we investigate the NGFI-based C-RAN.
We use the OpenAirInterface (OAI) open source 4G/5G mobile
communication software and GPP (general purpose processor)
based servers and personal computers to build an OAI C-
RAN testbed. We also use the source codes of OAI to run the
performance profiling on this OAI C-RAN testbed to understand
the behavior of this testbed. The purpose of this paper is to build
the comprehensive performance profiling methods and results on
the OAI C-RAN system, and to use these results to help designing
and optimizing the OAI C-RAN system. Based on the results, we
could decide which part of the system software to optimize to
improve the system speed and the efficiency of memory usage.

Index Terms—5G, LTE, OpenAirInterface.

I. INTRODUCTION

Cloud Radio Access Network (C-RAN) is a novel mobile
communication network architecture. The main concept of C-
RAN is to split the functionalities of the base stations into
two parts, including the baseband unit (BBU) which is in
charge of the baseband signal processing, and the remote radio
unit (RRU) which is in charge of the radio-frequency signal
processing. The capability of baseband signal processing are
aggregated in centralized servers, also known as the BBU pool,
instead of distributed base stations. The RRU at the remote
site handles the RF signal processing such as analog / digital
conversion, power amplifying, and filtering. As the software
defined radio technologies evolves, the BBU functionalities
could be implemented by software. Therefore, current trend
of C-RAN integrates the cloud computing and virtualization
technologies in order to dynamically allocate BBU computing
resources.

The operation of C-RAN relies on the high-speed transmis-
sion of the in-phase and quadrature signals between BBU and
RRU. This transmission link is referred to as the fronthaul,
in order to be distinguished with the backhaul which locates
between the traditional base stations and the core networks
[1]. Currently, there exist several standards for the fronthaul,
including the Common Public Radio Interface (CPRI), the
Open Radio equipment Interface (ORI) by the European
Telecommunications Standards Institute (ETSI), and the Open
Base Station Architecture Initiative (OBSAI). Among those

fronthaul standards, CPRI is the most commonly used one.
However, CPRI uses fibers as the point-to-point transmission
media, which are not flexible, not efficient, difficult to extend,
and with a huge amount of cost. Those disadvantages affect
the progress and acceptance of CPRI-based C-RAN in coun-
tries/regions where the fiber infrastructure is not popular [2].

In order to overcome the disadvantages mentioned above,
several telecom vendors and operators cooperated to propose
the Next Generation Fronthaul Interface (NGFI) [2], [3]. NGFI
is a promising fronthaul interface for the C-RAN with two
important properties. First, NGFI redefines the functionalities
of BBU and RRU. Some portions of the BBU functionalities
could be optionally moved to RRU. Therefore, BBU and
RRU are redefined as the Radio Cloud Center (RCC) and
Radio Remote System (RRS), respectively. Moreover, NGFI
replaces the point-to-point fiber transmission by the more
popular point-to-multipoint Ethernet transmission.

In this paper we investigate theperformance profiling of
NGFI-based C-RAN. We use the OpenAirInterface (OAI) open
source 4G/5G mobile communication software and GPP (gen-
eral purpose processor) based servers and personal computers
to build an OAI C-RAN testbed. The OAI project focuses on
open source software/hardware development for both the radio
access networks and core networks of 3GPP mobile commu-
nication networks [4]. In the OAI project, off-the-shelf radio-
frequency front-ends and personal computers are adopted, and
comprehensive 3GPP protocols are implemented. Combining
the affordable hardware and the open-source software, OAI
provides a sound foundation on which we could improve our
teaching and learning on mobile communications.

We also use the source codes of OAI to run the perfor-
mance profiling on this OAI C-RAN testbed to understand the
behavior of this testbed. The purpose of this paper is to build
the comprehensive performance profiling methods and results
on the OAI C-RAN system, and to use these results to help
designing and optimizing the OAI C-RAN system. Based on
the results, we could decide which part of the system software
to optimize to improve the system speed and the efficiency of
memory usage.

The rest of this paper is organized as follows. In Section
II we provide the related work in the literature. The system
architecture and the profiling tools that we adopt in this
work are presented in Section III. The numerical results and
discussions are provided in Section IV. Finally, conclusions

454

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018



Fig. 1. OAI C-RAN architecture.

are presented in Section V.

II. RELATED WORK

Nikaein et al. proposed the Radio Access Network as a
Service (RANaaS) [5]. They described using OAI and off-the-
shelf computer hardware to build cloud-based LTE platform,
and they discussed the feasibility and performance of this
platform. They adopted the OAI simulator to perform all
experiments, so that the performance profiling results in their
work could not represent the real operational performance of
OAI C-RAN.

Virdis et al. provided their OAI performance profiling results
in [6]. First they described their emulator environment and
the scheduling architecture, which was used to design and
to implement two medium access control (MAC) scheduling
algorithms. Moreover, they also verified these two MAC
scheduling algorithms by running OAI performance profiling,
including memory requirement and execution time. Their
results showed that OAI could effectively build and verify
scheduling prototype in LTE emulator environments. Because
their work use the OAI simulation environment called the
oaisim, their performance profiling results, like the work in
[5], could not represent the real operational performance of
OAI C-RAN.

III. SYSTEM ARCHITECTURE AND PROFILING TOOLS

Figure 1 shows the OAI C-RAN architecture, including the
OAI EPC (evolved packet core), RCC, RRS, and off-the-shelf
UE (user equipment). Four personal computers are installed
with Ubuntu Linux 14.04 and OAI software to run as the OAI
EPC, RCC, and two RRS’s, respectively. The universal soft
radio peripheral (USRP) B210 is adopted as a radio-frequency
front-end. We also adopt two smartphones with Rohde &
Schwarz SwissQual QualiPoc software as the UE.

The performance measurement includes the CPU usage,
memory usage, network flow for different user behavior. The
profiling tools that we adopt in this work are presented in the
following paragraphs.

A. perf

perf is one of the most commonly used performance counter
profiling tool for Linux systems [7]. It provides a simple
command-line interface for Linux performance measurements.

It supports hardware performance counters, software perfor-
mance counters, tracepoints, and dynamic probes.

B. iperf

iperf is a tool to actively measure the network performance
of IP networks [8]. It supports various parameters, including
protocols (TCP, UDP, and so on) and timing. It reports the
throughput, loss, and other parameters in each measurement
test.

C. Dstat

Dstat is a versatile tool for generating system resource
statistics [9]. It allows users to view all of the system resources
instantly. It provides the detailed information in columns, and
indicates the magnitude and unit that the output is displayed
with. It can also export data to CSV files for further processing.

D. top

The top program provides a real-time view of a running
Linux system [10]. It displays the system summary informa-
tion and the list of tasks currently running in the Linux system.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. CPU Usage for Different User Behavior

We use the perf software to measure the CPU usage for
different user behavior. Figure 2 to 5 show the CPU usage
for idle, YouTube, Skype, and live mode, respectively. Here
the live mode means that the traffic is generated from the UE
and transmitted uplink to the Internet, while in the YouTube
mode the traffic is downlink. These figures show that the CPU
usage for idle, YouTube, and Skype mode are of no significant
difference. The main system functions that consume the ma-
jority of CPU usage are taus, generate_dci_top, send_IF4p5,
recv_IF4p5, phy_procedures_eNB_TX, and rx_pucch. For
the live mode, some more functions for uplink also oc-
cupy the majority of CPU usage, including ulsch_decoding,
phy_threegpplte_turbo_decoder16, compute_alpha16, com-
pute_beta16, and compute_ext16.

Fig. 2. CPU usage for idle mode.

455

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Fig. 3. CPU usage for YouTube mode.

Fig. 4. CPU usage for Skype mode.

Fig. 5. CPU usage for Live mode.

B. CPU, Memory, and Network Usage in C-RAN

Figure 6 to 11 show the CPU, memory, and network usage
in C-RAN. In the horizontal axis, the term "no" means that the
OAI program is not running. Figure 6 and 7 show that, when
the RCC runs the OAI program, the CPU usage increases from
13% to 42% as the iperf transmission bandwidth increases.
Meanwhile, the memory usage is about 1 GB, regardless of
the iperf transmission bandwidth. Figure 8 and 9 show that,
when the RCC runs the OAI program, the CPU usage is
about 35% and the memory usage is about 0.5 GB. These
two values do not change with the increase of the iperf
transmission bandwidth. When the EPC runs the OAI program,
the CPU usage is only 0.1% to 0.3%, and the memory usage
is neglectable. For the sake of simplicity, we do not show
the illustrative results for EPC. Figure 10 and 11 show that
the fronthaul occupies about 70 Mbps traffic load for both
directions. This value is fixed, no matter there exists user traffic
or not. Note that we obtain this result when the number of
resource blocks is set as 25, i.e., 5 MHz bandwidth. When
the number of resource blocks increases to 50, i.e., 10 MHz
bandwidth, the amount of traffic load in the fronthaul increases
to about 140 Mbps.

Fig. 6. CPU usage in RCC.

Fig. 7. Memory usage in RCC.

456

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Fig. 8. CPU usage in RRS.

Fig. 9. Memory usage in RRS.

Fig. 10. Traffic load from RCC to RRS.

Fig. 11. Traffic load from RRS to RCC.

V. CONCLUSION

In this paper we investigate the NGFI-based C-RAN. We
use OAI open source 4G/5G mobile communication software
and GPP-based servers and personal computers to build an
OAI C-RAN testbed. We also use the source codes of OAI
to run the performance profiling on this OAI C-RAN testbed
to understand the behavior of this testbed. The purpose of
this paper is to build the comprehensive performance profiling
methods and results on the OAI C-RAN system, and to use
these results to help designing and optimizing the OAI C-RAN
system. Based on the results, we could decide which part of
the system software to optimize to improve the system speed
and the efficiency of memory usage.

The results of our work show that the CPU and memory
usages of RRS in OAI C-RAN are not huge. For mass
deployment of RRS in the future, the RRS could be in-
stalled and run on cost-effective low-end computers. The
CPU and memory usages of RCC are significant. Therefore,
it requires suitable design, virtualization technologies, and
resource allocation algorithms to effectively handle the RCC
processing. The fronthaul bandwidth occupation is fixed in the
current implementation of OAI C-RAN. Making the fronthaul
bandwidth occupation dynamically adjust to user traffic would
be a critical issue.

REFERENCES

[1] M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G Backhaul
Challenges and Emerging Research Directions: A Survey,” IEEE Access,
vol. 4, pp. 1743–1766, 2016.

[2] White Paper of Next Generation Fronthaul Interface, Version 1.0, China
Mobile Research Institute, 2015.

[3] Next Generation Fronthaul Interface (1914) Working Group.
http://sites.ieee.org/sagroups-1914. Accessed: 2018-05-31.

[4] OpenAirInterface. http://www.openairinterface.org. Accessed: 2018-05-
31.

[5] N. Nikaein, E. Schiller, R. Favraud, R. Knopp, I. Alyafawi, and T. Braun,
Towards a Cloud-Native Radio Access Network. Springer International
Publishing, 2017, pp. 171–202.

[6] A. Virdis, N. Iardella, G. Stea, and D. Sabella, “Performance Analysis
of OpenAirInterface System Emulation,” in 2015 3rd International
Conference on Future Internet of Things and Cloud, Aug 2015, pp.
662–669.

[7] perf. https://perf.wiki.kernel.org. Accessed: 2018-05-31.

457

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



[8] iperf. https://iperf.fr. Accessed: 2018-05-31.
[9] Dstat. https://github.com/dagwieers/dstat. Accessed: 2018-05-31.

[10] top. http://man7.org/linux/man-pages/man1/top.1.html. Accessed: 2018-
05-31.

458

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:38-0500
	Preflight Ticket Signature




