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Abstract—Recently, the number of the online videos is boom-
ing. However, its openness gives the horror clips a chance to
threaten children’s physical and mental health. Therefore, it is
necessary to design an algorithm to filter the horror clips in
online videos. In this paper, we proposed a multimodal multilevel
attention neural network for horror clip detection. Information
from visual modality and auditory modality is used to describe
the various factor of horror, including violence, bloody, deformed
human, scream, sudden sound, etc. The temporal-level attention
is designed to give the model the ability to capture horror
moments. The modal-level attention automatically balances the
weight on all modalities. We evaluate the model on the same
dataset used in MediaEval 2017 Emotional Impact of Movies
Task. The experimental result shows the advantages of our
proposed model compared with other groups.

I. INTRODUCTION

Nowadays, the Internet has become increasingly important
in daily lives. The online videos have brought us convenience.
Meanwhile, we also noticed that some videos are not appro-
priate for all users. A study shows that horror information
may translate into phobias on children [1], which means that
the horror clips may hurt children’s mental health. So it is
necessary to classifying and filtering those undesirable content.

Horror clip detection is to find the horror clip on the entire
video. Few studies have been done in this area. Wang et al.
used the visual, audio and color emotion features to describe
the horror [2], and recognized the horror video scene via
multiple-instance learning [3]. Ding et al. [4] proposed a multi-
view multi-instance learning model through sparse coding to
integrating the context cues among instances.

Although little researches have been done in this field, the
research work on video affective content analysis is flourish-
ing. Video affective content analysis aims to automatically
recognize the emotion induced by video, it could reduce to
a horror clip detection problem when the target emotion is
limited to horror. In this field, Jean H [5] used sound energy
and object motion as the low-level feature to identify the
slapstick comedy. TS et al. [6] proposed a hybrid SVM-RBM
classifier to recognize the emotion in the video. Soujanya et al.
[7] fused the visual, audio and textual modality for sentiment
analysis.

There are two main challenges in horror clip detection.
First, the factor that induces fear is various, including violence,
bloody, deformed human, scream, sudden sound, etc. So it’s
difficult to describe horror. Second, even in the most horrifying

movies, not all the moments are scaring. Only a fraction of
the time can be horror, which we called ”the horror moment”.
However, the existing database may not have the exact time
of horror moment, so the model needs to find it by itself.

In this paper, we propose the multimodal multilevel atten-
tion neural network model for horror clip detection. To better
describe horror, information from multimodality is used, and
several streams of the feature vector are extracted from each
modality. Temporal-level attention is designed to capture the
horror moment automatically. Modal-level attention can focus
on the more important modality.

The remainder of the paper is organized as follows. Section
II introduces the related work. Section III describes the entire
horror clip detection framework. The proposed model, which
is the most important part of the whole framework, is described
in Section IV. The experimental configuration is described in
Section V, and the result is presented in Section VI. Section
VII concludes the paper with a brief summary and description
of future work.

II. RELATED WORK

Resently, deep neural network has been used in video
affective content analysis. Saowaluk C et al. [8] proposed
a unique sieving-structured neural network to classify movie
clips into three type of emotion. Lei et al. [9] and Quan et al.
[10] built a multimodal deep regression Bayesian network to
capture the relation between the modalities for affective video
content analysis.

As an effective method, attention mechanism has been
widely used in many fields. Mnih et al. [11] introduced a
visual attention model that selecting a sequence of location
by attention mechanism and only processing those regions
with high resolution. It uses the hard attention mechanism,
which is non-differentiable, so the model needs to be trained
using reinforcement learning methods. Bahdanau et al. [12]
introduced the soft attention mechanism for neural machine
translation, which reveals the alignments between the source
and target sentence. Unlike hard attention, soft attention is
differentiable, so it can be trained easily. Xu et al. [13] intro-
duced an attention-based model for image caption generation.
It can automatically learn the latent alignment between caption
and image. Zichao et al. [14] proposed a hierarchical attention
network for document classification. The network has a word-
level attention layer followed by a sentence-level attention
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layer, which allows the model to learn step by step.

III. HORROR CLIP DETECTION FRAMEWORK

Horror clip detection aimed at giving an alarm when some-
thing horror appears. To ensure the sensitivity, the timescale
of detection result should be small. But emotion is not a short-
term phenomenon, the result based on a short clip may not be
reliable. So we recognize the horror in the relatively long clips,
and then transform the result into small timescale detection
result. The overall framework is shown in Fig. 1. Each part
described below:

• Window Sliding. The whole movie is cut into overlap-
ping clips. Each clip has an appropriate length (15-second
in this paper).

• Horror Clip Classification. Each clip is judged that
whether it contains any horror moment. The multimodal
multilevel attention neural network (MMANN) is used
for classification and will be described in Section IV.

• Detection Result Processing. The detection result is
generated based on the classification result of overlapping
clips. In this paper, the timescale of the detection result
is one second. Because of overlapping, each second of
the video is contained by more than one clip. So we
simply select the maximum possibility of those clips as
the horror possibility at this second.

In addition to detection, a common task that requires
determining whether a clip from a long movie is horror or
not. There are two ways to do it:

• Use the horror clip classification model directly. In this
way, the length mismatch of clips during training and
testing can lead to problems.

• Make the decision based on the detection result. In this
way, we can handle the clips with any length, and make
full use of the context information of the movie.

In this paper, we choose the second way to do it. The horror
possibility of one clip equals the maximum horror possibility
of all the seconds this clip contained. If it is greater than 0.5,
then this clip is classified as horror, and vice versa.

IV. MULTIMODAL MULTILEVEL ATTENTION NEURAL
NETWORK

Horror clip classification is the most important part of the
whole framework. Its structure is shown in Fig. 2. First, for
a movie clip, several streams of feature vector are extracted
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Fig. 1. The illustration of horror clip detection framework.

from visual and audio modality. Then, all the feature streams
are synchronized by dividing them into the same overlapping
segments, each segment is processed by LSTM to learn a
high-level representation. Next, temporal-level attention is
performed in segment representations. After that, the output
is further merged with modal-level attention to form the
embedding of this video clip. Finally, a decision (horror or
non-horror) is made.

A. Feature Extraction

Visual modality is the main source for human to obtain
information, it’s also the main cause of horror. Some important
factor of fear like blood and violence is mainly presented
through visual modality.

There are two things important: what is appearing on the
screen and how is it looks like. In view of this, two kinds
of the feature are extracted from visual modality: the embed-
ding vector of the image (called VGG16-fc6 in this paper)
and the information about the objects that appearing on the
screen (called ObjInfo in this paper). The object information
answered what’s on the screen explicitly, and the embedding
of the image answered both questions implicitly.

The embedding of the image is extracted from VGGNet
[15]. The ObjInfo feature is constructed in the following way.
Each image is processed by object detection model to detect
the objects that appearing on this image. The ObjInfo feature
of this image is the concatenating vector of all attribute values
of all types of objects, where all the attribute values are scalar,
shown as follows:

1) Occurrence. The number of times this type of the object
appears in the image.

2) Confidence. The confidence score provided by the
model. Choose the maximum score if more than one
occurrence.

3) Area. The size of the object. Choose the maximum area
if there is more than one occurrence.

4) Horizontal Position. The transverse distance between
object center and the screen center. Choose the object
with the maximum area if there is more than one
occurrence.

5) Vertical Position. The longitudinal distance between
object center and the upper edge of the screen. Choose
the object with the maximum area if there is more than
one occurrence.

In addition to the visual modality, audio also plays an
important role in foiling atmosphere and expressing emotion.
A horror movie will be less horror if the soundtrack is
removed. Therefore, two kinds of the feature are extracted
from auditory modality: the traditional MFCC and prosody
feature (called MFCC+Prosody in this paper) to describe what
the audio sounds like, and emotion-related feature (called
EmoInfo in this paper) to describe what emotion conveyed
by the audio.

Since each of the feature streams is used to describe one
modality, we call it the modal descriptor below.
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Fig. 2. Multimodal multilevel attention neural network (MMANN).

B. Feature Learning and Synchronizing

Different modal descriptors have different timescales. For
example, the frame rate of the video is usually 24 fps, but the
sample rate of the audio is much higher, such as 16kHz. This
allows the audio to have a higher time-resolution. Besides,
the timescale of modal descriptor also related to the modal
descriptor itself, that is, the traditional MFCC has higher
time-resolution than the statistic based emotion-related modal
descriptor. That mismatch makes it hard to merge different
modal descriptors later.

Therefore, we synchronize all the modal descriptors by
cutting them into the same overlapping segments, as shown in
Fig. 3. At each segment, LSTM is used to accept a sequence of
feature to form a high-level representation (called the segment
embedding). Notice that the LSTM shares parameters on dif-
ferent segments of the same modal descriptor. As for different
modal descriptor, the parameters of LSTM are independent.

C. Temporal-level Attention

Even in the most horrifying movies, not all the moments
are scaring. Some time is always needed to describe the
environment or foil atmosphere. So it would be nice if the
model has the ability to choose the most important segments
which cause the fear significantly.

The temporal-level attention is designed for this purpose.
For each modal descriptor, the segment embeddings are fused
according to (1):

v(m) =

s∑
i=1

c
(m)
i E

(m)
i (1)

Before sync

After sync

……

.

Modal descriptor A Modal descriptor B 

……
tim

e
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Fig. 3. An illustration of synchronizing two modal descriptors.

where v(m) is the combined vector of modal descriptor m
(called the modal descriptor embedding), s is the number of
the segments, E(m)

i is the ith segment embedding of modal
descriptor m, c

(m)
i is the attention weight on ith segment

embedding of modal descriptor m, given by (2):

c(m) = softmax(W · concat(E(m)) + b) (2)

where concat(•) convert a matrix to a vector. W is a weight
matrix and b is the bias vector. In this way, the model has
the ability to learn to output a higher attention weight on the
segment which is more related to horror.

D. Modal-level Attention

As mentioned before, different modalities have different
importance. So it is reasonable to have different weights. In
addition to the modality itself, the weight of modality also
related to the content. For scenes of blood and violence, visual
modality is more important. For some dark scenes, auditory
modality is more important. Because you can’t see anything at
this point, but you can still be scared by a sudden screaming.

The modal-level attention is designed to adjust the weight
of modal descriptor according to the current video content.
The calculation of modal-level attention is the same as that of
the temporal-level attention, except that the E

(m)
i appearing

in (1) and (2) represents the modal descriptor embedding now.

E. Decision Making

After previous parts, an embedding of the video clip is
generated. The last thing is using this embedding to determine
whether this clip is horror or not. There are many classical
models, such as Support Vector Machine (SVM), Random
Forest (RF), etc., can be used to make the decision. In order
to train the entire model easily using the backpropagation
algorithm, the Multilayer Perceptron (MLP) is chosen as the
decision model. Other decision models will be explored in the
future.

V. EXPERIMENTS

A. Database

The model was evaluated on the same dataset used in
MediaEval 2017 Emotional Impact of Movies Task [16],
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TABLE I
DATA DISTRIBUTION

#Movies #Horror clips #Non-horror clips

Training Set 24 251 4161
Validation Set 6 32 830

Test Set 14 204 5506

which is a derived from LIRIS-ACCEDE database [17]. The
development set consists of 30 movies, with a total length of
7.37 hours. The test set consists of 14 movies, with a total
length of 7.95 hours. All the movies were cut into 10-second
clips, with 5-second overlap between the adjacent clips. Each
clip is labeled as horror or not. Six movies in the development
set were chosen as the validation set, and the remaining form
the training set. Table I shows the details.

Notice that the horror clips are rare, may not be sufficient
to train the model. So we recut all movies into 15-second
clips with 1-second overlap to perform data augmentation.
(Acutally, this is the ”window sliding” part of the framework,
described in Section III). Then the biggest problem is to
generate the label of those clips in the training set, because
the original label is based on 10-second clips with 5-second
overlap. There is a fact that every horror clip must contain
one horror moment at least. That means the non-horror clip
doesn’t contain any horror moment. So for each 15-second
clip, if it contains an entire 10-second clip which is labeled as
horror, then this 15-second clip is horror too. If it is covered
by consecutive non-horror 10-second clips, it’s non-horror
too. Otherwise, the label of 15-second clip stays unknown,
since we don’t know the precise time of horror moment.
For simplicity, all the unknown clips in the training set were
discarded.

Notice that the movie after data augmentation is the input of
MMANN, which is a model used in ”horror clip classification”
part. In test stage, the output of MMANN will be further
processed to form the result of origin movie clips (described
in Section III), that means the test set is strictly same as the
dataset used in MediaEval 2017.

B. Feature Extraction Configuration

For visual features, the video was first sampled into an
image stream. The embedding vector of the image was ex-
tracted from VGGNet (VGG16 [15] fc6 layer)1 every one
second, provided by MediaEval 2017 organizer [16], using
Matlab Neural Networks toolbox2. The object appearing on the
image was detected by faster R-CNN with inception resnet v2
model [18] (pre-trained on the open image dataset [19]). The
detection result includes the object’s name, the confidence and
the box location of the object. All the types of objects detected
in the training set were filtered by the mutual information
between the type of the object and whether it contained by a
horror clip. Only top 25 types of objects were selected, and
the rest was ignored. We described each type of objects with 5

1https://www.mathworks.com/help/nnet/ref/vgg16.html
2https://www.mathworks.com/products/neural-network.html

attributes, so the dimension of ObjInfo feature is 5×25 = 125.
Two images per second were sampled from video to obtain the
ObjInfo stream.

For audio features, traditional MFCC and prosody were
extracted by openSMILE [20] toolbox with 20ms window
length and 10ms window shift. To make training easier, those
features were downsampled to represent 1-second length audio
segment with 0.5-second shift, by averaging all the features
in the downsampling window. The emotion-related feature
was extracted by openSMILE [20] toolbox for every 5-second
audio segment with 1-second shift. The default configuration
named ”emobase2010.conf” was used.

C. Experimental Configuration

In the experiment, the hyperparameter was tuned according
to the results of cross-validation. The final parameters are
described below. The number of LSTM node was 64. The
MLP had one hidden layer with 64 nodes using the ReLU
activation function and an output layer with 1 node using the
sigmoid activation function. All parameters were initialized by
Xavier normal initializer [21].

Binary cross-entropy was used in loss function with reg-
ularization terms. L2 regularization was performed on all
parameters with the weight of 1. In order to reduce overfitting,
it was also performed on the modal-level attention weights
with the weight of 0.0005. Moreover, dropout technique [22]
was used before and between LSTM nodes with a ratio of
50%.

The model was optimized by Adam algorithm [23] with
learning rate of 0.0005. The batch size was 256. At each epoch,
an equal number of positive and negative clips were randomly
selected from the training set. Considering the amount of
training data is limited, it may cause the overfitting problem.
We stopped training after 5 epochs according to the loss
evaluated on the validation set.

D. Performance Evaluation Metrics

The model was evaluated by precision, recall, and f1.3 All
the metric are averaged over all movies, as showed in (3):

M̂ =
1

#Movie

#Movie∑
i=1

Mi (3)

where the M̂ means a movie-level metric, could be precision,
recall or f1. Mi means the corresponding metric calculated in
movie i.

Due to the randomness of the model, the result of our model
shown below is the average result of five independent trials.

VI. RESULTS AND DISCUSSION

A. Contribution of Attention Mechanism

In order to analyze the contribution of attention mechanism,
we disable some of them by fixing the attention weights all
the same. As shown in Table II, the precision is low when
both attention mechanisms are disabled. When there is only

3We don’t use accuracy as a metric due to the high imbalance of data.
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TABLE II
CONTRIBUTION OF THE ATTENTION MECHANISM

Precision Recall F1

No Attention 0.2393 0.6570 0.2880
Temporal-level Attention (TLA) 0.2682 0.6228 0.2966
Modal-level Attention (MLA) 0.2521 0.6202 0.2899
TLA + MLA 0.2562 0.6511 0.3106

Note: The maximum value of all metrics is 0.7143 ( 14−4
14

), because
there are four movies which don’t contain any horror moment.

one kind of attention mechanism, temporal-level attention is
more effective than modal-level attention. From the f1 metric,
it can be seen that when both attention mechanisms are used
together, the overall performance of the model is improved.

Comparing the last three rows, the recall is lower when
some attention mechanism is disabled. This may be related
to the way to disable the attention mechanism. That is, the
average weighting on temporal-level may conceal the horror
moment and the average weighting on modal-level makes
the important modality overshadowed by other less relevant
modalities. So the recall raises when both levels enable the
attention mechanism. As for why the recall is so high when
all attention mechanism is disabled, more research is needed
in the future.

B. Contribution of Modal Descriptors

To explore the contribution of the different modal descriptor,
Table III shows the result of using only some of the modal
descriptor. The first four rows of the table show the results
when only one modal descriptor is used. In this case, VGG16-
fc6 works best. Next four rows of the table show the results
of using three modal descriptors. Performance drops the most
when there is no VGG16-fc6, followed by no ObjInfo. Next
two rows show the results of using modal descriptors belong
to visual or auditory domain only, the performance of using
only visual domain modal descriptors are very close to the
best performance.

All the results above show that the modal descriptors from
visual domain contribute much more than those from auditory
domain, and the VGG16-fc6 contributes most. The last line
of the table shows the result when all modal descriptors are
used, it further improves overall performance, according to f1.

C. Performance Comparison

Table IV shows the result of our model compares with other
groups who take part in MediaEval 2017 Emotional Impact
of Movies Task [16]. Our model outperforms three of them
on all three metrics. For MIC-TJU, our model’s precision is
lower, but both recall and f1 are much higher. As an assistant
tool to help humans to filter horror clips, the value of recall
determines the quality of work, and the value of precision
determines the quantity of work. So those two kinds of the
model can work together in the actual system.

D. Discussion

Visual analysis is a good way to understand how the model
works. We select a movie from validation set and show how

TABLE III
CONTRIBUTION OF MODAL DESCRIPTORS

Visual Auditory Precision Recall F1
VGG Obj M+P Emo

X 0.1819 0.6321 0.2421
X 0.1646 0.3839 0.1623

X 0.1278 0.5124 0.1682
X 0.1346 0.4600 0.1798

X X X 0.1170 0.4040 0.1406
X X X 0.2201 0.6506 0.2796
X X X 0.2524 0.5918 0.2947
X X X 0.2678 0.6113 0.3045

X X 0.2518 0.6285 0.3073
X X 0.1277 0.4911 0.1631

X X X X 0.2562 0.6511 0.3106

Note: VGG=VGG16-fc6; Obj=ObjInfo; M+P=MFCC+Prosody;
Emo=EmoInfo.

TABLE IV
COMPARISON WITH MEDIAEVAL 2017 RELATED WORKS

Precision Recall F1

HKBU [24] 0.1688 0.0657 0.0786
TCNJ-CS [25] 0.2553 0.1922 0.1740
THUHCSI [26] 0.2318 0.2781 0.2352
MIC-TJU [27] 0.3756 0.0991 0.1424
MMANN 0.2562 0.6511 0.3106

the modal-level attention weights vary over time, as shown in
Fig. 4. The vertical axis represents different modal descriptors,
and the horizontal axis represents the overlapping clips in
chronological order. We find that model pays more attention
to VGG16-fc6, and it does contribute the most, according
to Table III. That means the model does learn the different
importance of modal descriptors.

We also observed the temporal-level attention weights, but
they do not change much over time and the pattern of change
is not significant. This may due to the small number of horror
clips which are not enough to support the model to learn the
pattern of horror moment when there is no precise labeling of
it. Besides, the cause of fear is variety, making the training
data of the same pattern more scarce. However, considering
that temporal-level attention is still helpful according to Table

Time

VGG16-fc6

ObjInfo

MFCC+Prosody

EmoInfo

.

Fig. 4. An example of modal-level attention weights varies with time.
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II, we will continue to study and refine it in the future.

VII. CONCLUSIONS

In this paper, we proposed the multimodal multilevel atten-
tion neural network for horror clip detection. Multimodal aims
to better describe the factor which induces fear. Temporal-level
attention mechanism is designed to capture the horror moment.
Modal-level attention mechanism automatically balances the
weight on all modalities. We evaluate the model on the same
dataset used in MediaEval 2017 Emotional Impact of Movies
Task. Our model shows a huge advantage on recall and
outperforms all other groups on f1.

In the future, we will try to extract more features, such as the
semantic information or the type of the movie, to better detect
the horror content. In addition, we will analyze the reason
for the low precision and try to propose some strategies to
improve it. Furthermore, this model could be adapted to other
types of content, for instance, the porn scenes. By now, just
horror scenes were evaluated, more scenes will be evaluated
and explored in the future.
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