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Abstract—This work aims at reconstructing image from
compressed-measured data in the presence of symmetric α-
stable (SαS) noise. We first employ the ℓ1-norm as the estimator
to depress the influence of SαS noise, and then the ADMM
framework is employed to address the resulting optimization
problem. Moreover, a smoothing strategy is adopted to address
the ℓ1-norm resulting in a nonsmooth optimization problem.
To exploit more prior knowledge and image features, a robust
composite regularization model is proposed for training by deep
neural network (DNN). In the training phase, the DNN can be
utilized to train the samples for the optimal parameters, the
optimal shrinkage function and the optimal transform domain.
Experiments show that our proposed algorithm can obtain higher
reconstruction Peak Signal to Noise Ratio (PSNRs) than some
existing state-of-the-art robust CS methods.

I. INTRODUCTION

Compressive sensing (CS) [1] is an emerging promising
approach that aims for accurate acquisition and reconstruction
of the sparse signal (e.g., image) from a small amount of sub-
Nyquist sampling data. Typical applications include magnetic
resonance imaging (MRI) [2], radar imaging [3], and hyper-
spectral imaging [4]. The basic linear observation system can
be formulated as follows:

y = Ax+ n (1)

where y ∈ RM×1 denotes the observation data, A ∈
RM×N , (M ≪ N) represents the linear operator or random
sampling matrix, x ∈ RN×1 is the desired signal vector
that is sparse in some transform domain, and n ∈ RM×1 is
often considered Gaussian with the bounded norm ∥n∥2 6 ξ.
The CS theory states that, if the desired unknown signal is
inherently, then the ill-posed problem of recovering x from y
can be accurately addressed by

x̂← argmin
x

1

2
∥Ax− y∥22 + λg(x) (2)

where the ℓ2-norm term ∥Ax− y∥22 is the observation fidelity
term that ensures the concurrence of y and x, and λ is the
regularization parameter. The penalty function g(x) usually
provides prior knowledge for the optimization problem via a
norm function

g(x) = ∥Dx∥pp =
n∑

i=1

|(Dx)i|
p
, 0 6 p 6 1 (3)

Here, D denotes the sparsifying transform operator.
Symmetric α-stable (SαS) noise is a typical impulsive

noise often generated in signal/information measurement and
transmission systems that will cause the traditional CS recon-
struction algorithms in (2) to degrade severely. To suppress the
outliers caused by SαS noise, one popular effective optimiza-
tion model employs the ℓ1-norm as the metric for the residual
error by

x̂← argmin
x
∥Ax− y∥1 + λg(x) (4)

The CS formulation in (4) is known as robust CS, compared
with the quadratic estimator of ℓ2-norm in (2), is more
suited for using the ℓ1-norm to model large outliers; hence,
it has been widely used in designing robust CS algorithms.
However, optimization of the objective function is intractable
because of the resulting nonsmooth cost function term of the
ℓ1-norm. Among all the existing effective robust recovery
algorithms, the alternating direction method of multipliers
(ADMM) framework is regarded as one of the more effective
and efficient approaches [5]–[7]. Using an operator splitting
[8], this framework suggests to separate the regularization term
by an additional variable. However, it is intractable to tune
these parameters, e.g., penalty parameter and regularization
parameter. What’s more, it is also challenging in CS to choose
optimal sparsifying transform domain and the corresponding
regularization function g(x). Inspired by recently work of
ADMM-net for CS reconstruction under Gaussian-assumption
environment [9], in this paper, we propose a robust-ADMM-
Net to address the reconstruction problem in the presence of
SαS noise. The proposed robust-ADMM-net algorithm uses
the deep neural network method to train the corrupted image
data for optimal parameters. In addition, the ADMM-net can
also be utilized for training the shrinkage function as well as
the sparsifying transform dictionary D. Experiments results
demonstrate that the proposed robust CS reconstruction ap-
proach can outperform the state-of-the-art CS robust methods.

II. PROPOSED ROBUST-ADMM-NET FRAMEWORK

A. Robust ADMM Framework

ADMM is a simple and powerful framework for the high-
dimension optimization problem in machine learning and
signal processing that adopts a variable-splitting strategy to
separate coupled components via auxiliary variables [10]. In
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this paper, we design the following robust optimization model
by

x̂← argmin
x
∥Ax− y∥1 +

L∑
l=1

λlg(Dlx) (5)

where g(·) denotes the regularization function, such as ℓp -
norm (0 < p ≤ 1), Dl denotes the sparsifying transform dic-
tionary (e.g., sines, wavelet bases), with examples of a typical
sparsifying transform including the Discrete Cosine Transform
(DCT) and the Discrete Wavelet Transform (DWT); and λl

denotes the regularization parameter. Unlike the optimization
problem (4), the advantage of this model can obtain more
physical mechanism and prior knowledge for optimization
[11].

To solve the above optimization problem (5) based on the
ADMM framework, we typically use an auxiliary variable zl ∈
RN×1, then the optimization problem (5) can be rewritten as

argmin
x

1

2
∥Ax− y∥1 +

L∑
l=1

λlg(zl)

s.t. zl=Dlx, ∀l ∈ [1, 2, · · · , L].
(6)

The augmented Lagrangian of problem (6) is

L(x, z, α) =
1

2
∥Ax− y∥1 +

L∑
l=1

λlg(zl)

−
L∑

l=1

⟨αl, zl −Dlx⟩ +
L∑

l=1

ρl
2
∥zl −Dlx∥22

(7)

where {αl} ∈ RN×1 are Lagrangian multipliers, {ρl} > 0
are penalty parameters, and {λl} denotes the regularization
parameter; these parameters will play critical roles in the
optimization process. According to the ADMM framework,
we have the following three steps:

x(n+1) = argmin
x

1

2
∥Ax− y∥1

−
L∑

l=1

⟨
α
(n)
l , z

(n)
l −Dlx

⟩
+

L∑
l=1

ρl
2

∥∥∥z(n)l −Dlx
∥∥∥2
2

(8)

z(n+1) = argmin
x

L∑
l=1

λlg(zl)

−
L∑

l=1

⟨
α
(n)
l , z

(n)
l −Dlx

(n+1)
⟩
+

L∑
l=1

ρl
2

∥∥∥zl −Dlx
(n+1)

∥∥∥2
2

(9)

α(n+1) = argmin
x

L∑
l=1

⟨
αl,Dlx

(n+1) − z
(n+1)
l

⟩
(10)

The x-step in (8) in fact is a penalized least square (LS)
problem. To solve this optimization problem, we first smooth
the L1-norm term ∥Ax− y∥1, specifically, we linearize the
term ∥Ax− y∥1 at the given x̃ as

1

2
∥Ax− y∥1 =

1

2
∥Ax− y∥1,ε

=
1

2
∥Ax̃− y∥1,ε +

1

2
⟨Ax−Ax̃, d(Ax̃− y)⟩

+
1

2τ
∥Ax−Ax̃∥22

(11)

where ∥Ax− y∥1,ε =
∑
i

[(Ax− y)2i + ε2]
1
2 , ε = 10−3, τ >

0 is a proximal parameter. Thus, we have

x(n+1) = argmin
x

+
1

2
⟨Ax, d(Ax̃− y)⟩+ 1

2τ
∥Ax−Ax̃∥22

−
L∑

l=1

⟨
α
(n)
l , z

(n)
l −Dlx

⟩
+

L∑
l=1

ρl
2

∥∥∥z(n)l −Dlx
∥∥∥2
2

(12)
We can obtain the closed-form solution by derivation

x(n+1) =

[
1

τ
ATA+

L∑
l=1

ρlD
T
l Dl

]−1 [
1

τ
ATAx̃

− 1

2
AT d(Ax̃− y) +

L∑
l=1

ρlD
T
l (zl − βl)

] (13)

where d(Ax̃− y)i = ((Ax̃− y)2i + ε2)−1/2. Specifically, in
this paper, we set , where P ∈ RN×N1 denotes the under-
sampling matrix, and F ∈ RN1×M is a Fourier transform;
thus, we have the solution of the x-step,

x(n+1) = FT

[
1

τ
PTP+

L∑
l=1

ρlFD
T
l DlF

T

]−1 [
1

τ
PTPFx̃

− 1

2
PT d(PFx̃− y) +

L∑
l=1

ρlFD
T
l (zl − βl)

]
(14)

where d(PFx̃− y)i = ((PFx̃− y)2i + ε2)−1/2

To simplify the above solution, we specially set x̃ = 0 to
simplify our algorithm. In the n+ 1 -th iteration,

x(n+1) = FT

[
1

τ1
PTP+

L∑
l=1

ρlFD
T
l DlF

T

]−1 [
1

2
d(PTy)

+
L∑

l=1

ρlFD
T
l (zl − βl)

]
(15)

In the first iteration for initialization, we set zl = 0, βl = 0
then we have

x(1) = FT

[
1

τ1
FTPTPF+

L∑
l=1

ρlFH
T
l HlF

T

]−1 [
1

2
d(PTy)

]
(16)

where d(pTy)i = ((pTy)2i + ε2)−1/2.
The solution of the z-step (9) can be obtained by the

shrinkage function determined by g(·), e.g., the L1-norm
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function corresponding with the soft-shrinkage operator [12].
Then, the output of z-step can be described as

z
(n+1)
l = S(Dlx

(n) + β
(n)
l ;λl/ρl) (17)

where S(·) represents the corresponding nonlinear shrinkage
function. For initialization, in the first iteration, we set the
initial S(·) as the soft-shrinkage operator and set Dl as the
DCT basis. For simplicity, let βl = αl/ρl, then the α-step
is converted into the β-step, and the subproblem have the
following solution:

β
(n+1)
l = β

(n)
l + ηl · (Dlx

(n+1) − z
(n+1)
l ) (18)

where the parameter ηl denotes the update rate.

B. Deep Neural Network for ADMM framework

Deep learning has be regarded as the representative advance
of artificial intelligence, deep learning approaches are capa-
ble of extracting features from images for recognition and
restoration [13]. To connect the ADMM framework and the
deep neural network, we first map the iterations in ADMM
to the layers of the deep neural network. If every iteration
in ADMM is considered as one layer of the deep neural
network, in this case, the above three steps can be regarded as
three layers: Reconstruction layer x(n+1) in (16); Nonlinear
transform layer z

(n+1)
l in (17); and the Multiplier update

layer β(n+1)
l in (18). As mentioned before, finding an optimal

transform domain is an active research area because a sparser
representation often leads to higher reconstruction accuracy.
Some popular sparsifying transforms, such as DCT, Fourier
and Haar, are often not optimal. In this paper, we also employ
a conventional layer c

(n+1)
l to obtain the optimal sparsifying

transform domain [9]; thus, we have the following four layers:
(1) Reconstruction layer x(n+1):

x(n+1) = FT

[
1

τ1
PTP+

L∑
l=1

ρlFD
T
l DlF

T

]−1 [
1

2
d(PTy)

+
L∑

l=1

ρlFD
T
l (zl − βl)

]
(19)

(2) Nonlinear transform layer z(n+1)
l :

z
(n+1)
l = S(Dlx

(n) + β
(n)
l ;

λl

ρl
) (20)

(3) Multiplier update layer β(n+1)
l :

β
(n+1)
l = β

(n)
l + ηl · (Dlx

(n+1) − z
(n+1)
l ) (21)

(4) Convolution layer c(n+1)
l :

c
(n+1)
l = D

(n+1)
l x(n+1) (22)

Then the general ADMM framework can be represented
using deep neural network, after considering the link between
each layers, we adopt a more effective network structure [9]
to design our ADMM-net shown in Fig.1.

Fig. 1. An improved robust ADMM network structure.

(a) (b) (c)

Fig. 2. (a) A ’Chest’ magnetic resonance image for training; (b) A magnetic
resonance image and the k-space data with 0.3 sampling rate; (c) A ’Brain’
magnetic resonance image for reconstruction.

C. Updating by Backpropagation over Robust-ADMM-
Network

In this paper, we choose the popular normalized mean
square error (NMSE) as the loss-function for training. The
loss-function between the output and the ground-truth is
described as

Loss =
1

Γ

∑
i=1

∥x̂− x∥2
∥x∥2

(23)

where x̂ is the network output (or reconstruction result), x is
the ground-truth and the set Γ represents the number of pairs
of under-sampling data and ground-truth images. To obtain the
optimal parameters, transform domain and shrinkage function,
we employ the backpropagation strategy to compute the gra-
dient w.r.t. the parameters. The procedure of x(n) → c(n) →
z(n) → β(n) → x(n+1) is the forward pass. In the forward
pass, we calculate the NMSE for using the updated parameters,
the learned shrinkage function, and the learned transform
domain. The procedure of x(n) ← c(n) ← z(n) ← β(n) is
the backward pass. In the backward pass, we calculate the
gradient of NMSE w.r.t. each parameter in every layer, see
[10] for more details.

III. EXPERIMENTS

Considering the fact that the desired MR images are
unknown in applications, we first randomly choose real-
world ’Chest’ MR images (see Fig.2 (a) and (b)) cor-
rupted by eight levels of α noise with 0.3 sampling
rate for training, and then reconstruct the different ’Brain’
MR image (see Fig.2 (c)) using the learned Robust
ADMM-net in the presence of SαS noise. All experi-
ments are performed for the real-world magnetic resonance
(MR) images (https://masi.vuse.vanderbilt.edu/workshop2013
/index.php/Segmentation-Challenge Details).
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Fig. 3. Impact of different stage numbers on reconstruction. Top: The
reconstruction averaged PNSRs versus different number of stage; Bottom:
The reconstruction averaged CPU time versus different number of stage.

A. Reconstruction Performance versus the number of network
stages

We evaluate the performance with different number of
network stages. In general, a deeper network can often obtain
higher reconstruction accuracy, but also costs more computa-
tional overhead. To make a tradeoff between the reconstruction
accuracy and speed, in the following, we will investigate the
impact of stage number on reconstruction results. We first
empirically choose one ’Chest’ MR image as experiment for
training, and then reconstruct the ’Brain’ MR image (See
Fig.2 (c)) using the trained robust-ADMM network. Figure 3
presents the reconstruction results versus the number of stages.
From the results, we can observe that the reconstruction PSNR
tend to a higher value with the stage number increase, but then
decrease, as shown in the top of figure 3, the reconstruction
algorithm can obtain the highest PSNR value at 5, 6 and 7
stages. The bottom of Figure 3 describes the CPU time versus
the stage number, the result shows that the computational
overhead increase linearly with the number of stage number.

B. Reconstruction Performance versus the number of training
image

To evaluate the reconstruction results of proposed Robust-
ADMM-net using different number of training samples, in this
experiment, we employ 1, 5, 10, 20 and 30 different ’Chest’
magnetic resonance (MR) images for training respectively,
and then reconstruct the ’Brain’ images using the learned
network under four different levels of SαS noise. Figure 4
detail the reconstruction PSNRs and the corresponding CPU
time under different cases. From the results we can explicitly
observe that the more training samples can achieve higher
reconstruction accuracy, and then tend to stable gradually.
Meanwhile, the computational overhead have no significant
increase. However, the increasing number of training samples
will causes overwhelmingly computational overhead in the
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Fig. 4. Reconstruction Performance versus the training number; Top: The
reconstruction averaged PNSRs versus different number of training samples;
Bottom: The reconstruction averaged CPU time versus different number of
training samples.

training process, hence it is not unnecessary to increase the
sampling number in application.

C. Reconstruction Performance compared with State-of-the
art Algorithms

To further demonstrate the superiority of the proposed
Robust-ADMM-net algorithm, in this section, we compare the
proposed algorithm with some existing corresponding work.
The YALL1 algorithm [10] is a well-known robust reconstruc-
tion algorithm, and the LqLA-ADMM algorithm [5] is a more
recent approach for robust compressive sensing reconstruction.
Both of them employ the ADMM framework to address
the robust reconstruction problem and have achieved good
performances. The ADMM-net algorithm [9] is a similar work
based on a denoise model called BM3D-MRI [14], although
the ADMM-net is proposed in Gaussian environment, we find
taht the algorithm can suppress the outliers effectively, and the
algorithm of Robust-ADMM is the proposed algorithm before
training. For a fair comparison, the robust reconstruction algo-
rithms of YALL1, LqLA-ADMM and Robust-ADMM employ
the discrete cosine transformation (DCT) as the sparsifying
transform; the algorithms of ADMM-net and Robust-ADMM-
net employ DCT as the initial transform. Following the above
analysis, we employ the proposed network with 5 stages for
training using five different ’Chest’ MR images. In this ex-
periment, we train the samplings only under a very impulsive
noise environment (α = 1.0, γ = 10−4), and then reconstruct
the different ’Brain’ MR image using the learned parameters
under four different levels of noise. As shown in Fig.2 (c),
this ’Brain’ MR image is widely used to evaluate the CS
reconstruction performance. Table I detail the reconstruction
results of five algorithms for different levels of SαS noise-
corrupted ’Brain’ data with four sampling rates of 0.2, 0.3, 0.4
and 0.5. In the tables, ’–’ indicates that the performance of the
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TABLE I
RECONSTRUCTION PSNR (DB) FOR ’BRAIN’ DATA WITH DIFFERENT SAMPLING RATES AND NOISES.

Method α = 1.0, γ = 10−3 α = 1.0, γ = 10−5 α = 1.5, γ = 10−1

20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50%
YALL1 – – – – 21.06 22.83 25.39 26.31 – – – –
LqLA-ADMM – – – – 22.18 24.53 26.74 28.37 – – – –
ADMM-net 27.53 30.38 31.48 32.04 28.97 31.45 33.51 35.21 27.21 29.11 28.10 28.74
Robust-ADMM 25.53 26.96 28.12 28.83 25.58 27.07 28.20 28.96 25.55 27.05 28.18 28.93
Robust-ADMM-net 28.27 31.17 32.17 33.43 29.05 31.68 33.42 35.50 28.55 30.67 30.68 31.91

corresponding algorithm is very poor. We can observe that the
algorithms of YALL1 and LqLA-ADMM fail to reconstruct
the images when the strength of SαS noise is too high
(e.g., γ = 10−1 and 10−3 ). The algorithms of ADMM-
net and Robust-ADMM can obtain considerable reconstruction
results, with the proposed Robust-ADMM-net achieving the
best performance. Moreover, the proposed Robust-ADMM-
net can improve the reconstruction results significantly after
training via the network.

IV. CONCLUSIONS

This paper caters a robust sparse CS reconstruction algo-
rithm called robust-ADMM-net jointing the ADMM frame-
work and deep neural network for robust sparse composite
Regularization combined with the composite regularization
model. A robust composite model is employed to further
exploit more physicalism and prior knowledge of trained
image. The strategy of deep neural network can effectively
train the parameters through the backpropagation methods.
Compared with the no training algorithm of Robust-ADMM,
the proposed Robust-ADMM-net algorithm can improve the
reconstruction accuracy significantly. Simulation results tell us
that the strategy of jointing the traditional CS reconstruction
algorithms with deep neural network can improve the recovery
performance, and should be our future work.
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