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Abstract—In this paper, a design method of CSD (Canonic
Signed Digit) coefficient FIR (Finite Impulse Response) filters
using GA (Genetic Algorithm) is described. In GA, individuals
tend to have similar genetic structure as the number of iterations
increases. Therefore, a new strategy using multiple populations
under different constraints was proposed to keep a successive
diversification. However, a detail effectiveness of strategy is not
verified. In this paper, several design examples are shown to
present the effectiveness of multiple population GA for the CSD
coefficient FIR filter design.

I. INTRODUCTION

Digital filters are used in various fields such as communi-
cation system. FIR filters can realize a perfect linear phase
characteristic and ensure an absolute stability. However, in
order to realize a sharp cutoff characteristic, a high order FIR
filter is required. As a result, the power consumption increases
as the circuit scale increases.

The circuit scale of FIR filters is dominated by multipliers
which are consisted of shifters and adders. The number of
shifters corresponds to the number of nonzero digits included
in the binary number. Therefore, a reduction of nonzero digits
is effective for reducing the circuit scale. It is well-known that
the CSD representation is effective to reduce nonzero digits
[1]–[3]. The CSD representation expresses each digit of the
filter coefficient by 0, 1 and 1 = −1. Then, an allocation of
two adjacent nonzero digits is forbidden. In addition, a total
number of available nonzero digits is limited for reducing the
circuit scale.

In general, a design problem of CSD coefficient FIR filters
becomes a NP-hard problem, and thus it is difficult to design
an optimal filter. Several heuristic approaches are used to
solve the design problem of FIR filters [4]–[7] and those have
been applied for solving the sub-optimal design fast instead
of a strict design method [8]–[10]. Especially, GA has a high
applicability to the combinatorial optimization problem [7].

GA is consisted of three operations which are the crossover,
the mutation and the selection. However, the individuals in
the new generation tend to have similar genetic structures as
the number of iterations increases. For avoiding this difficulty,
MPGA was proposed [11]. MPGA is consisted of three
populations with different available number of nonzero digits
to provide the different genetic property. Although a perfor-
mance improvement of CSD coefficient FIR filter design by
MPGA has been already revealed, the detail effect of crossover
between individuals of each population is not verified. In this
paper, the effectiveness of CSD coefficient FIR filter design
by MPGA is verified through several design examples.

II. DESIGN PROBLEM

A. Design problem of FIR Filters

A magnitude response H(ω) of linear phase FIR filters
when a filter order N is even number and the impulse response
is even symmetric, is described as follows,

H(ω) =

N/2∑
n=0

ancos(nω), (1)

where an is the filter coefficient. The design problem of FIR
filters in the min-max criterion can be formulated as follows,

min
{an}

max
ω∈Ω

|D(ω) − H(ω)|, (2)

where D(ω) is the desired magnitude response and Ω is an
approximation frequency band.

B. Design of CSD Coefficient FIR Filters

The multiplier consists of adders and shifters as shown
in Fig.1. The CSD representation is effective to reduce the
number of nonzero digits. In the CSD representation, each
digit of the filter coefficient is represented by 0, 1 and 1 = −1,
and the CSD representation has the restriction which the
allocation of two adjacent nonzero digits is forbidden. For
example, the coefficient (0.0110111)2 in binary representation
shown in Fig.1 is represented as (0.1001001)CSD in the CSD
representation shown in Fig.2. From those figures, it can be
confirmed that the number of nonzero digits can be reduced
and thus the circuit scale is also reduced. In this paper, in
order to reduce the circuit scale, the total number of available
nonzero digits is also limited.

The filter coefficient in the CSD representation is presented
as follows,

an =

p∑
k=1

xn,k2−k, (3)

where p is a word length and xn,k ∈{1, 0, 1 }. The constraint
on the restriction for forbiding the allocation of the two
adjacent nonzero digits is formulated as follows,

|xn,k| + |xn,k+1| ≤ 1. (4)

In addition, the constraint for the total number of available
nonzero digits is formulated as follows,

N/2∑
n=0

p∑
k=1

|xn,k| ≤ Λ, (5)
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where Λ is the maximum number of total available nonzero
digits. The design problem of CSD coefficient FIR filters is
formulated as follows,

min δ

sub to |D(ωi) − H(ωi)| ≤ δ

|xn,k| + |xn,k+1| ≤ 1

N/2∑
n=0

p∑
k=1

|xn,k| ≤ Λ

i ∈ {0, 1, · · · , S},

(6)

where S is the number of divided frequencies and δ is
the maximum absolute error between D(ω) and H(ω). This
problem is one of the mixed integer programming problems.

C. Objective Function

The objective function is defined as follows,

F (x) = Wδ + s1φ1(x) + s2φ2(x), (7)

where x = [x0,1, x0,2, · · · , xN/2,p]
T , W , s1 and s2 are weight

parameters, and φ1(x) and φ2(x) are the penalty functions.
φ1(x) is the penalty function which forbids the allocation of
two adjacent nonzero digits and is defined as follows,

φ1(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if Bn,k ≤ 1
N/2∑
n=0

p−1∑
k=1

Bn,k, otherwise
, (8)

where

Bn,k = |xn,k| + |xn,k+1|. (9)
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1 110
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Fig. 3. The individuals in GA

φ2(x) is the penalty function which limits the total number of
available nonzero digits and is defined as follows,

φ2(x) =

{
0, if λ ≤ Λ

λ − Λ, otherwise
, (10)

where

λ =

N/2∑
n=0

p∑
k=1

|xn,k|. (11)

From the viewpoint of reducing the circuit scale, it is
desirable that the number of nonzero digits per one coefficient
is limited to at most one. However, it is not effective for the
coefficient having the high sensitivity. Therefore, the design
of CSD coefficient FIR filters is required that the number of
nonzero digits per one coefficient is one or two.

D. GA (Genetic Algorithm)

GA consists of three operations: crossover, mutation and se-
lection. The simple structure of the individual in GA is shown
in Fig.3. In the crossover, two individuals are chosen from the
population and each gene of those individuals is exchanged
according to the crossover probability. In the mutation, the
gene in the individual is changed to the allele according to
the mutation probability. In the selection, the good individuals
which is chosen based on the value of objective function is
selected from the population. Then, a new generation is created
by the individuals selected. As a result, the crossover and the
mutation prompt the diversification, and the selection prompts
the intensification. For the good design, it is desired that a
balance between the diversification and the intensification is
always kept among the search process.

However, the individuals in the new population tend to have
similar gene structure as the number of iterations increases.
The mutation and the selection can essentially keep the diversi-
fication and the intensification, respectively. On the other hand,
because the crossover depends on genetic structure, it requires
the existence of the different gene structures among individuals
for the successive search. An example of gene structures when
several individuals indicate the similar structures is shown in
Fig.4. In Fig.4, individual 1 and 4 or 2 and 3 have the same
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Fig. 4. Crossover (similar structure of individuals)

genetic structures. Therefore, the possibility that the another
individuals are newly generated is extremely low, and thus the
diversification may be prevented.

E. MPGA (Multiple Population GA)

MPGA has three populations having different number of
available nonzero digits; Λ, Λ−1 and Λ+1. The initial values
of each population are given by simply rounded continuous
coefficient [12] to the nearest CSD numbers. The three popula-
tions are defined by different penalty functions. The crossover
between Λ and Λ− 1 works to prompt for removing nonzero
digits. And the crossover between Λ and Λ+1 works to prompt
for adding nonzero digits. As a result, MPGA posseses the
individuals with different genetic structures until the end of
the search. Therefore, the preservation of diversification of
search can be expected.

A procedure of MPGA consists of three operations like a
standard GA: the crossover, the mutation, the selection. In the
crossover, xbest and xrand are chosen from three populations,
where xbest is the best solution among all populations and
xrand are randomly selected individual from all populations.
The gene between two individuals are changed according
to the crossover possibility. Then, the uniform crossover is
applied as the crossover law. In the mutation, the gene of
the individual is randomly selected according to the mutation
rate and those are exchanged to the allele according to the
mutation possibility. The CSD representation has three gene:
xn,k ∈ {0, 1, 1}. Therefore, the probability of exchanging to
the allele is set to 50%. In the selection, the individuals of the
new generation are selected from all individuals. Then, the
ranking selection is applied as the selection law.

TABLE I
DESIGN CONDITIONS

Ex.1 Ex.2 Ex.3 Ex.4
N 100 150 200 300
p 16 16 16 16
fp 0.21 0.2 0.15 0.21
fs 0.23 0.215 0.16 0.217
S 500 750 1000 1500
Λ 100 150 200 300
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Fig. 5. Verification result of standard GA (Ex.1)

III. VERIFICATION OF SEARCH PROCESS DESIGN
EXAMPLES

Several design examples are shown to present the effective-
ness of the proposed method. The desired magnitude response
D(ω) was defined as follows,

D(ω) =

{
1, 0 ≤ ω ≤ 2πfp

0, 2πfs ≤ ω ≤ π
, (12)

where fp is the normalized passband edge frequency, fs is the
normalized stopband edge frequency.

The design conditions are listed in Table I. The number
of individuals per a population was set to 60, the number of
generations was set to 800 and the number of trials was set to
50. W , s1 and s2 were set to 1. The crossover rate was set to
0.95 and the mutation rate was set to 0.3. The updating curve
of standard GA and the crossover points between Λ and Λ are
shown from Fig.5 to Fig.8. The updating curve of MPGA and
the crossover points between Λ and Λ, Λ and Λ−1 and Λ and
Λ + 1 are shown from Fig.9 to Fig.12. The filter coefficients
obtained by the standard GA and MPGA in Ex.1 are listed in
Table II.

From those verification results, it can be confirmed that
MPGA has many crossover points and its average value of
F (x) is small. Terefore, it can be verified that MPGA has the
individuals with dfferent genetic structures until the end of the
search and can keep a successive diversification. From Table
II, it is shown that the total number of nonzero digits is equal
to Λ and the allocation of adjacent nonzero digits does not
exist.

293

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 0.0105

A
ve

ra
ge

 v
al

ue
 o

f 

Number of iterations

F
(x

)

 0  100  200  300  400  500  600  700  800

Updating curve

Λ · Λ

Fig. 6. verification result of standard GA (Ex.2)
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Fig. 7. verification result of standard GA (Ex.3)

IV. CONCLUSIONS

In this paper, the search performance of MPGA for CSD
coefficient FIR filter design was verified. From the several
design examples, it was shown that the search by MPGA could
be diversified by the crossover.
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Fig. 10. verification result of MPGA (Ex.6)
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Fig. 12. verification result of MPGA (Ex.8)

TABLE II
THE FILTER COEFFICIENTS (EX.1)

GA multiple population GA

a0 0.1001000010000000 0.1001000010010000
a1 0.1010000000000000 0.1010000000000000
a2 0.0010001000000000 0.0010001000000000
a3 0.0101001001000000 0.0101001001000000
a4 0.0010010001000000 0.0010010001000000
a5 0.0001010100000000 0.0001010100000000
a6 0.0010100000100000 0.0010100001000000
a7 0.0000101010000000 0.0000101010000000
a8 0.0001010001000000 0.0001010001000000
a9 0.0000001001000000 0.0000001000000000
a10 0.0001000100100000 0.0001000101000000
a11 0.0000100100100000 0.0000100101000000
a12 0.0000101001000000 0.0000101001000000
a13 0.0000100100000000 0.0000100100000000
a14 0.0000010100000000 0.0000010100000000
a15 0.0000100100000000 0.0000100101000000
a16 0.0000000100000000 0.0000000100000000
a17 0.0000100010100000 0.0000100001000000
a18 0.0000001000000000 0.0000001000000000
a19 0.0000101010000000 0.0000101010000000
a20 0.0000010000000000 0.0000010000000000
a21 0.0000010001000000 0.0000010001000000
a22 0.0000010100000000 0.0000010100000000
a23 0.0000001000000000 0.0000001000000000
a24 0.0000010100000000 0.0000010100000000
a25 0.0000000000000000 0.0000000000000000
a26 0.0000010000000000 0.0000010010000000
a27 0.0000001010000000 0.0000001010000000
a28 0.0000010010001000 0.0000010010010000
a29 0.0000001010000000 0.0000001010000000
a30 0.0000001000000000 0.0000001000000000
a31 0.0000010100000000 0.0000010101000000
a32 0.0000000010100000 0.0000000010000000
a33 0.0000010100000000 0.0000010100000000
a34 0.0000000010000000 0.0000000010000000
a35 0.0000001010000000 0.0000001010000000
a36 0.0000000100000000 0.0000000100000000
a37 0.0000001001000000 0.0000001001000000
a38 0.0000001010000000 0.0000001010000000
a39 0.0000000100000000 0.0000000101000000
a40 0.0000001001000000 0.0000001001000000
a41 0.0000000001000000 0.0000000001000000
a42 0.0000001010000000 0.0000001010000000
a43 0.0000000010000000 0.0000000010000000
a44 0.0000000101000000 0.0000000101000000
a45 0.0000000101000000 0.0000000101000000
a46 0.0000000101000000 0.0000000100000000
a47 0.0000000100000000 0.0000000100000000
a48 0.0000000010100000 0.0000000010000000
a49 0.0000001000000000 0.0000001000000000
a50 0.0000000001000000 0.0000000000001000
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