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Abstract—Binaural sound is well known as a three dimensional
sound which achieves a virtual reality of sound, or an augmented
reality of sound. Binaural sound is characterized by ILD (Inter-
aural Level Difference) and IPD (Interaural Phase Difference).
In this paper, we propose a method to separate sound sources
from an observed mixture signal, without losing respective ILD
and IPD. The proposed method is established by improving a
conventional sound source separation method based on single
voice activity detection which detects segments including only
single sound source. The proposed method estimates ILD and
IPD from the single voice activity segments. After separating the
sound sources by using the conventional method, we give the
estimated ILD and IPD on the separated sound sources to refine
the binaural characteristics. The effectiveness of the proposed
method is clarified from estimation results of ILD and IPD for
binaural sounds.

I. INTRODUCTION

Binaural sound is a so-called 3D sound, and it reproduces
a real sound environment. Binaural sound consists of the
left and right sound signals that are corresponding to sound
signals observed at the left and right ears. Binaural sound is
characterized by ILD (Interaural Level Difference) and IPD
(Interaural Phase Difference)[1].

Sound source separation for binaural sound can be applied
to sound localization systems[2], 3D audio systems[3], and
so on. Many sound source separation methods have been
proposed. Adaptive microphone array methods[4] and in-
dependent component analysis methods[5] basically require
many microphones, i.e., the number of microphones is greater
than or equal to the number of sound sources. On the
other hand, BSS-BWC (Blind Source Separation via Bin-Wise
Clustering)[6] and BSS-SVAD (BSS based on Single Voice
Activity Detection)[7] are recently proposed and they require
only two microphones. BSS-SVAD is a simple version of BSS-
BWC, and achieves low computation load. BSS-SVAD can
also be applied to the sound source separation for the binaural
sound. When the observed binaural sound includes multiple
sound sources they share some frequencies at the same time,
ILD and IPD are overlapped. In this case, the separated sound
sources by using BSS-SVAD do not recover original ILD and
IPD.

In this paper, we investigate a sound source separation
method recovering the original ILD and IPD. We extend
BSS-SVAD for binaural sounds, by introducing the estimation

of ILD and IPD. We estimate ILD and IPD in SV (Single
Voice) segments which only single sound source exists. In SV
segments, non-overlapped ILD and IPD are easily obtained
when the spectral power is sufficiently large. To obtain ILD
and IPD with high accuracy, we estimate them only from SV
segments with high spectral power. In the proposed method,
one separated signal obtained from BSS-SVAD is used to
create the other separated sound so that ILD and IPD relation
hold. As a result, it is possible to obtain a two-channel
separated signal keeping the feature of binaural sound. At the
end of this paper, we confirm the effectiveness of the proposed
method via simulation. The simulation results showed that the
proposed method gives small estimation error for ILD and IPD
in comparison to the conventional method.

II. BLIND SOURCE SEPARATION BASED ON SINGLE VOICE
ACTIVITY DETECTION

In this section, we give an overview of the sound source
separation procedure of BSS-SVAD[7]. The proposed method
is obtained by expanding BSS-SVAD.

A. Sound Source Separation Procedure

Let xi(t) be the observed signal at the ith microphone at
time t, where i = 1, 2. We assume that xi(t) is given as

xi(t) =
N∑

k=1

vki(t) + ni(t), (1)

vki(t) =
L−1∑
l=0

hki(l)sk(t− l), (2)

where N is the number of sound sources, sk(t) denotes
the kth sound source signal, ni(t) denotes an environmental
noise observed at the ith microphone, hki denotes the impulse
response from sk(t) to the ith microphone, and L is the length
of the impulse response. The signal vki(t) denotes the kth
sound source observed at the ith microphone.

The overview of BSS-SVAD is shown in Fig.1. First, taking
STFT (Short-Time Fourier Transform) of xi(t), we have the
observed spectrum Xi(τ) (i = 1, 2) where τ denotes the frame
index. The observed spectrum Xi(τ) is given as

Xi(τ) = HkiSk(τ) +Ni(τ) +
∑
k′ ̸=k

Hk′iSk′(τ), (3)
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Fig. 1. Overview of BSS-SVAD

where Hki, Sk(τ), Ni(τ) denote STFTs of hki(t), sk(t), ni(t),
respectively.

In the literature[7], the probability density function of
X2(τ)/X1(τ) is modelled by GMM (Gaussian Mixture
Model). To get GMM, we estimates its parameters from SV
segments. Based on the GMM, we calculate the posteriori
probability of Xi(τ) at each T-F (Time-Frequency) bin. The
posteriori probability directly gives a T-F mask which takes a
value less than or equal to unit at each T-F bin. The separated
spectrum Yki(τ) is obtained by multiplying Xi(τ) with T-F
mask. Taking inverse STFT of Yki(τ), we have the separated
signal yki(t) in time domain.

Detail explanations of each block shown in Fig.1 are pre-
sented in the following subsections.

B. Single Voice Activity Detection

Firstly, we expain how to detect SV segments. The ratio of
X1(τ) and X2(τ) is given as

RX(τ) =
X2(τ)

X1(τ)
=

Hk2Sk(τ) +N2(τ) + o2
Hk1Sk(τ) +N1(τ) + o1

, (4)

o1 =
∑
k′ ̸=k

Hk′1Sk′(τ), (5)

o2 =
∑
k′ ̸=k

Hk′2Sk′(τ), (6)

where oi denotes the observed spectrum excluding the kth
sound source at the ith microphone. Let τ ′ be the frame index
of SV segment. We have

RX(τ ′) =
Hk2Sk(τ

′) +N2(τ
′)

Hk1Sk(τ ′) +N1(τ ′)
. (7)

Here, we define Qk as

Qk =
Hk2

Hk1
. (8)

When |N1(τ)| and |N2(τ)| are sufficiently small in compar-
ison to |HkiSk(τ)|, we have RX(τ ′) ≈ Qk. On the other
hand, when τ ̸= τ ′, RX(τ) fluctuates. Hence, we can judge
the present frame τ as a SV segment when RX(τ) does not
change in successive past several frames.

C. Modeling By GMM

Next, we describe a method of modeling observed mixture
signal with GMM. Let the observed vector be X(τ) =
[X1(τ), X2(τ)]

T. In order to cancel the influence of the
amplitude characteristic of the sound source Sk(τ), X(τ) is
normalized to create a new vector X ′(τ). When a histogram

of X ′(τ) is created, N peaks equal to the number of sound
sources appear. The histogram is approximated by using
GMM. Each cluster is represented by the complex Gaussian
density function as

p(X ′(τ)|ak, σk) =
1

πσ2
k

exp

(
−||X ′(τ)− aH

k X ′(τ)ak||2

σ2
k

)
,

(9)

where ak = [ak1, ak2]
T is the average of the Gaussian

distribution approximating the kth cluster, and σ2
k represents

the variance of the Gaussian distribution. By approximating
the histogram using (9), we have the following probability
density function.

p(X ′(τ)|φ) =
N∑

k=1

βkp(X
′(τ)|ak, σk), (10)

φ = {a1, σ
2
1 , β1, ...,aN , σ2

N , βN}, (11)

where φ represents the parameter set and βk represents the
weight of each Gaussian function. In order to approximate
X ′(τ) histogram, it is necessary to estimate a parameter set
φ. BSS-SVAD simply puts σ2

k and βk as

σ2
k = 0.1, (12)

βk = 1/N. (13)

The average ak is estimated by using Leader-Follower-
Clustering (L-F-C)[8] for the phase spectrum ∠RX(τ) of
RX(τ). Here, Ck is a cluster of the kth sound source, and
τ ′k denotes a frame of SV segment of kth sound source. The
center of Ck is estimated as the median value of all ∠RX(τ ′k)
for each frame. We estimate ak as

|ak| = mean{|X ′(τ ′k)|}, (14)

∠ak = mean{∠X ′(τ ′k)}, (15)

where, | · | denotes the amplitude spectrum, ∠{·} denotes
the phase spectrum, and mean{·} denotes the operator that
calculates the average value. Determining the parameter set
φ, we can calculate the posteriori probability (10).

D. Mask Creation Based on Posteriori Probability

Based on the posteriori probability P (Ck|X ′(τ)) of the
sound source k, the T-F mask Fk(τ) is given as

Fk(τ) = P (Ck|X ′(τ)). (16)

The spectrum of the separated signal of sound source k is
obtained as

Y k(τ) = Fk(τ)X(τ), (17)

where Y k(τ) = [Yk1, Yk2]
T. Taking inverse STFT of Y k(τ),

a separated signal yki(t) in time domain is obtained.

III. BINAURAL SOUND SOURCE SEPARATION

In this section, we describe problems of conventional sound
source separation method in binaural sound and give the
solution method.
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Fig. 2. Image of signal observation using dummy-head

A. Binaural Sound and Head Related Transfer Function

In binaural sound, it is necessary to reproduce the acoustic
effect of the human head. When recording a binaural sound,
a dummy head, which is a stereo microphone simulating
the human head, is used. Microphones of dummy head are
placed at a position corresponding to the human eardrum. It
is possible to record a signal in consideration of the HRTF
(Head-Related Transfer Function) of the human head. It is
said that HRTF plays an important role especially with regard
to direction[1]. In this paper, we discuss the perception in the
horizontal direction.

Binaural sound can be simulated by convolving the impulse
response, recorded by the left and right ears of the dummy
head, with an acoustic signal. The image of sound observation
by the dummy head is shown in the Fig.2. In Fig.2, S1 and
S2 represent sound sources, X1 and X2 represent observed
signals, and Hk1 and Hk2 (k = 1, 2) denote transfer function
from sound source to dummy head.

B. Refine the Binaural Characteristics Based on ILD and IPD

Considering a method that enables binaural characteristic
reproduction using ILD and IPD even when left and right
HRTFs are unknown. Since both ears of human are attached to
both sides of the head, when sound comes in from the side, it
arises a difference in sound level and arrival time to both ears.
It is known that the amplitude ratio of the binaural sounds is a
clue to perception in the left and right direction over the whole
audible frequency range. On the other hand, it is said that the
time difference (phase difference) from the sound source to
the ears is limited to about 1.6kHz or less, which is a clue
to the perception of the left and right direction[1]. ILD and
IPD at the sound source k with respect to channel-1, which is
observed 1st microphone, can be expressed as

DLk = 20 log10(|Hk2|)− 20 log10(|Hk1|), (18)
DPk = ∠Hk2 − ∠Hk1, (19)

Fig. 3. Flow of proposed method

respectively.Even when HRTF is unknown and DLk and DPk

are known, spectrum Yk2 can be generated from Yk1 as

Yk2 = |Yk1| · 10

(
DLk

20

)
exp{j(∠Yk1 +DPk)}. (20)

C. Estimate ILD and IPD from Single Voice Activity Segments

In this section, we will derive a sound source separation
method effective for binaural sound by using BSS-SVAD.

If DLk, DPk and the separated signal spectrum of channel-
1 are found, the separated signal spectrum of channel-2 which
is effective for binaural sound can be obtained from (20).

Since a SV segment is only single sound source speaks,
other sound sources do not share the same frequency at the
same time. When DLk and DPk of each sound source can
be estimated from a SV segment of each sound source. In
this paper, it is necessary to estimate DLk and DPk with high
accuracy. The influence of environmental noise etc., the ratio
of the spectrum with small power is less reliable than the ratio
of spectrum with high power. If the entire spectrum of τ ′ is
used, the accuracy of estimation of DLk and DPk is reduced
due to the influence of error. So, we use only the spectrum
with high power among τ ′.

First, we collect all spectrum of τ ′ of sound source k. Ar-
range in descending order of power for each frequency. Then,
the spectrum of the upper T% is extracted for each frequency.
We calculate RX only from each extracted spectrum. And
estimate values D̂Lk, D̂Pk of DLk, DPk from the average
value of amplitude and phase of RX as

D̂Lk = mean{20 log10(|RX(τ
′
k)|)}, (21)

D̂Pk = mean{∠RX(τ
′
k)}, (22)

respectively.
Next, using D̂Lk, D̂Lk and the separated signal spectrum

Yk1, we create separated signal spectrum Yk2 from (20).
Block diagram of propose method is shown in Fig.3. First,

SV segment is detected from X1(τ), X2(τ). Second, we
estimate φ, D̂Lk, D̂Lk and create a cluster Ck. Third, we
calculate P (Ck|X1(τ)). Then, T-F mask is created based on
P (Ck|X1(τ)), and a separated spectrum Yk1(τ) is obtained.
Finally, Yk2(τ) is created by (20), and taking inverse STFT of
Yk1(τ) and Yk2(τ) to obtain yk1(t) and yk2(t).

In the proposed method, the features of binaural sound can
be retained due to the estimated ILD and IPD.
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(a) Left

(b) RightFig. 4. HRTF of sound source position is 40◦

IV. PERFORMANCE EVALUATION

We carried out simulations to confirm the capability of the
proposed method.

A. Experimental Conditions

Binaural sounds used in the simulation are created using
HRTF[9] distributed from MIT Media Laboratory as experi-
mental data. The HRTF was obtained from a dummy head,
where the sound source is located at a distance of 1.4m from
the dummy head in an anechoic room and measured sound
sampled at 44.1kHz. The HRTF[9] used in the simulation
is shown in Fig.4(a) and Fig.??, where the sound source is
located at 40◦ position to the right from the center of the
dummy head. We used an instrumental sound taken from
MedleyDB[10] which is music database for research. This
sound is a music signal of 10 seconds. The sound source
position assumed that in the horizontal plane from the center
of the dummy head microphone at 40◦ positions to the right
(R40◦) and 30◦ positions to the left (L30◦). Two types of
binaural sounds were created by convolving HRTF of that
condition with sound.

Experimental conditions are summarized in a TableI.

TABLE I
CONDITIONS IN SIMULATION

Number of Source 2
Direction of Source R40◦，L30◦

Length of Sound 10[s]
Sampling Frequency 44.1kHz
Frame Length 4096 (92ms)
Frame Sift Length 1024 (23ms)
T 10%

TABLE II
RESULTS OF OBJECTIVE EVALUATION

Method Direction SD MSE
BSS-SVAD[7] R40◦ 15.7dB 1.6

Prop. R40◦ 4.1dB 1.2
BSS-SVAD[7] L30◦ 13.2dB 1.0

Prop. L30◦ 5.7dB 0.8

B. Objective Evaluation

In this subsection, we compare the estimation results of
ILD and IPD by the conventional method (BSS-SVAD[7]) and
the proposed method (Prop.). As an objective evaluation of
ILD, We used SD (Spectrum Distortion) which evaluates the
difference in amplitude spectrum. SD[1] can be written as

SD =

√√√√ 1

N

N∑
m=1

[
20 log10

|D̂Lk(m)|
|DLk(m)|

]2

, (23)

where D̂Lk(m), DLk(m) denote the estimated and true ILDs,
respectively. And m represents frequency index. For good
estimation, SD approaches 0.

On the other hand, MSE (Mean Square Error) is used as an
objective evaluation for IPD. MSE is defined as

MSEk =
1

N

N∑
m=1

(
D̂Pk(m)−DPk(m)

)2

, (24)

where D̂Pk(m), DPk(m) represent the estimated and the true
IPDs, respectively. For good estimation, MSE approaches 0.

The objective evaluation results are summarized in a TableII.
From TableII, SD at R40◦ was 4.1dB for Prop., and 15.7dB for
the BSS-SVAD. MSE of Prop. was 1.2, and BSS-SVAD was
1.6. SD is improved by 11.6dB, and MSE is improved by 0.4
points. Similarly, when the sound source position is L30◦, SD
was 5.7dB for Prop., while BSS-SVAD gave 13.2 dB. MSE
of Prop. was 0.8, BSS-SVAD was 1.0. SD is improved by
9.1dB and MSE is improved 0.2 points. From these results,
it is found that Prop. can estimate more accurate ILD and IPD
than BSS-SVAD.

Also, the square error between the estimated value and the
true value of ILD and IPD for each frequency is used. The
square error SEL(m), SEP (m) between the estimated value
of ILD and IPD and the true value was calculated as

SEL(m) =
(
D̂L(m)−DL(m)

)2

, (25)

SEP (m) =
(
D̂P (m)−DP (m)

)2

. (26)
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(a) BSS-SVAD[7]

(b) Prop.

Fig. 5. Square error of ILD which sound source position is R40◦

Evaluation results were shown in Fig.5(a) to Fig.6(b), where
the vertical axis is the square error and the horizontal axis is
the frequency.

V. CONCLUSIONS

Comparing Fig.5(a) with 5(b), it can be confirmed that Prop.
can estimate the ILD with high accuracy around at about 7kHz
to 16kHz. Although the square error is smaller than BSS-
SVAD in the frequency higher than 16kHz, the estimation
error is large. This reason may be that the sound source used
in the simulation did not have sufficiently large power in the
frequencies higher than 16 kHz. Also, in Fig.6(a) and 6(b), we
see that the proposed method did not remove many estimation
errors. These errors exist in the vicinity of direct current and
higher than 16kHz. We see that both BSS-SVAD and Prop. can
be accurately estimated IPD up to about 1.6kHz, which is used
for direction perception. It can be seen that using only the high
power frequency components contribute to the improvement
of the estimation accuracy of ILD and IPD. These simulations

(a) BSS-SVAD[7]

(b) Prop.

Fig. 6. Square error of IPD which sound source position is R40◦

showed that the Prop. is more effective for binaural sound
separation in comparison to the BSS-SVAD.

In this paper, we propose a method to estimate ILD and IPD
by using high power component in SV segment. The proposed
method adjusts amplitude and phase of separated signal based
on the estimated ILD and IPD. We also confirmed the effec-
tiveness of the proposed method through objective evaluation
experiments. Experimental results showed that the proposed
method can accurately estimate ILD and IPD, although the
estimation accuracy of the conventional BSS-SVAD.
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