
Research on Docker Role Access Control Mechanism
Based on DRBAC

Dapeng Lang and Haochen Jiang* and Wei Ding and Yu Bai
*Haerbin Engineering University, Heilongjiang Province, China

E-mail: 1974457552@qq.com Tel: +86-13206755967

Abstract— With the rapid development of virtualization
technology, security issues have also become increasingly
prominent. All kinds of virtualization platforms use access
control mechanisms to prevent illegal or legal entities
from illegally accessing `unauthorized resources. This
paper discusses the access control mechanism adopted in
Docker container, analyzes its shortcomings, and proposes
a DRBAC based Docker role access control mechanism.
This method is based on the role allocation method,
dynamically expands the existing model, and adds a role
access control mechanism to the Docker container.
Through the distributed trust management and access
control mechanism of DRBAC, we can solve the hidden
danger brought by the main body because of delegated
authority to other entities autonomously. This scheme can
effectively control the access management and delegate
problem of the main body when accessing Docker
resources, and improve the access security of Docker
container to host resources.
Key word ： DRBAC, Docker container, access control,
virtualization technology

I.BACKGROUND

With the rapid development and popularization of cloud
technology, the high performance and portability of container
technology are becoming more and more popular; which are
widely concerned and widely promoted [1]. But the security
of access between the container and the host is also greatly
challenged. Access control technology is utilized to make sure
that unauthorized information system resources are not
accessed illegally by authorized or unauthorized entities. As a
basic important safety technology, it is widely used in all
kinds of information system and operating systems [2] .

At present, various access control techniques are used in
various virtual technologies and containers. The existing
Docker access permission techniques contains the autonomic
access control mechanism provided by some Linux operating
systems, and the Namespace mechanism and Cgroups
mechanism in the Linux kernel. The latter two technologies
are used to isolate the resources between the Docker
containers and the Linux host, Namespaces mechanism and
Cgroups mechanism are also the basis for access control

`This work was supported by the free exploration program of Harbin
Engineering University (No. HEUCF180607).

mechanisms between the Docker container and the Linux host.
However, not all resources in the Linux operating systems are
under a namespace. Processes of the Docker container can
access unrelated kernel resources, such as /sys, /proc, etc. in
the root directory. Once the Docker container process needs to
be able to access these files, it may cause the kernel resources
leak, and more seriously. The Docker container user may gain
control permissions for the entire host machine

This article analyzes the isolation mechanism of Docker
container for access control in Linux host. Meanwhile we
present the arbitrary distribution of users' permission in
autonomous access control which leads to the problem of
lower security. At last, it presents the problem of poor
flexibility in mandatory access control. To solve the defects
existing in the control of independent access control and
compulsory access control, this article proposes a Docker role
access control mechanism based on DRBAC to improve the
safety of containers

II.RESEARCH STATUS

The access control model consists of three types.
Discretionary Access Control, Mandatory Access Control,
and Role-Based Access Control. Each of these models has
advantages and disadvantages, among them, the discretionary
access control model has the characteristics of flexibility and
autonomy, and users can grant some of their own access
permission or full access permission to the other user. This
model will cause the system to fail to control the information
flow and to determine the user's scope of permission. Access
control is employed in multilevel security systems, following
strict hierarchy rules. Therefore, the flexibility of the model is
not just enough. It is both difficult and important to apply in a
dynamic environment. The main idea of Role-Based Access
Control is to add roles between users and permissions in the
traditional access control model, by controlling the grant and
revoke of the user's permission through roles, it can
effectively reduce the complexity of the authorization
management work caused by a mount of users of the system.

At present, in the cloud-based virtual environment, the
main technology is the access control technology based on
attributes, as mentioned in article [3], Cloud computing access
control addresses architecture, mechanism, and model issues.
In attribute control, among the attribute control, many types
are classified, such as access control technology based on
attribute encryption and attribute access control optimization

235

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

technology based on trust evaluation [4]. Docker is based on
the autonomous access control technology[5] which comes
with Linux. At the same time it uses the role access control
technology[6] in the Selinux system, and proposes to add a
dynamic role access control mechanism in the Docker access
control mechanism.

In summary, in the virtual platform and container, the
access control technology requires (1) flexibility, (2)
controllability, and (3) scalability. These qualities ensure that
authorized users securely access authorized resources.

III.BASIC PRINCIPLES AND IMPLEMENTATION
PROCESS

A. Docker Access Mechanism.
The Docker container access control mechanism is based

on the Namespaces mechanism and Cgroups mechanism. It
uses the two mechanisms in the Linux kernel to achieve
isolation and quota of containers. The Docker container
utilizes the Namespaces namespace mechanism to dismiss
processes, networks, messages, file systems, UTS, and Linux
hosts in the Docker container. The Docker uses Cgroups
mechanism to limit and measure the system resources, so as
to control the system resources that the Docker container
process can use.

a. Namespaces mechanism
The Linux operating system uses the Linux Namespaces

namespace mechanism to separate the Linux system resources.
After Docker uses the LinuxNamespaces namespace
mechanism, the Linux system resources become local
resources, belonging to a fixed Namespaces. Two system
resources under the same namespace are invisible to each
other, and the system resources under different namespaces
are invisible to each other. For example, from the perspective
of operation system, PIDNamespace will have multiple PID
processes, but they belong to different namespaces, and they
will not conflict with each other.

b. Cgroups mechanism
The full name of Cgroups is the Control Groups control

group. The Linux operating system distributes the physical
resources of the Linux system by using the control group
technology. The control group mechanism is the underlying
support of the container technology in the Linux system,
which provides the basis for the virtualization of the container.
The Linux kernel uses the Cgroups control group mechanism
to restrict, record and isolate the Linux operating system
resources. The Cgroups mechanism is made up of different
Cgroups subsystems, and any process and system resources
are grouped under different subsystems. There is a Cgroups
virtual file system in the Linux system. The virtual file system
provides Linux users with interfaces to manage and set up
each Cgroups subsystem. Users can set up and manage the
Cgroups control group corresponding to the CGroup
subsystem they need to use.

B. Docker Role Assignment Mechanism

By default, Docker-initiated containers are strictly limited
to allow only some of the kernel's features. This is due to the
Linux kernel's ability to provide fine-grained access control.
Servers will run a bunch of processes that require privilege
privileges, including ssh, cron, syslogd, hardware
management tool modules (such as load modules), network
configuration tools etc. Almost all privileged processes are
managed by a support system other than the container. For
example: ssh access is managed by the ssh service on the
host; cron is usually performed as a user process, permissions
are given to applications that use it; logs are managed by
Docker or third-party services. So the kernel only needs to
allocate some functions to the Docker container without
having to be a real root permission, so that it can satisfy its
authority requirements.

C. Basic Concepts Of DRBAC
DRBAC model is a role-based distributed access control

model proposed by Freudenthal et al. The model uses PKI to
identify and verify the identity and authentication of the
trusted operating entity, thus realizing the access control
problem of resources in dynamic alliance environment across
multiple management domains. The DRBAC model provides
an extended distributed trust management and access control
mechanism. This model has the following three
characteristics: third party commission, value attribute, and
certificate subscription.

DRBAC combines the advantages of RBAC and trust
management systems, which are systems that manage both
flexible and decentralized, extensible implementations.
DRBAC describes a controlled behavior based on roles. The
role is defined within the trust domain of an entity, and it can
delegate the role to other roles within different trust domains.
DRBAC uses PKI to identify all entities associated with trust-
sensitive operations and acknowledges assignment certificates.
Mapping from role to authorization namespace avoids the
need to identify additional policy roots.

D. DRBAC Allocation Syntax
In the DRBAC basic model. The syntax of the delegation

is: [Subject→Object] Issuer Where Object is a role, the Issuer
is an entity, and the Subject is a role or entity. The meaning of
syntax is the signing certificate declares that the role Object
grants access to the Subject

There are three types of commissions in the DRBAC model.
a. object delegation: [Subject→A.a]A, the implication is

that publisher A grants A.a to Subject, the A.a is a role that
A definition of A’s own namespace.

b. assignment delegation:[Subject→A.a]B, the implication
is that B assigns delegate authority of role A.a to Subject.
After that, the Subject can delegate the role A.a to another
Subject.

c. third-party delegation:[Subject→A.a]B, the implication
is that publisher B delegates role A to Subject, where an and
B are different entities

E. PKI technology

236

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

PKI technology is based on public key technology and
relies on digital certificates to bind the information of entities
on the network to their respective public keys. By
automatically managing keys and certificates, a secure and
reliable network environment is established for users, and
users can use data encryption and digital signature techniques
to verify the identity of users on the Internet in a variety of
applications. In order to ensure the authenticity, integrity,
confidentiality and non repudiation of information transmitted
on the Internet. PKI is the only technology that enables user
authentication and ensures data security on the Internet so far.

A typical PKI system mainly includes the following
parts: Certification: CA, Registration Authority: RA,
certificate issuing body and PKI application.The PKI
functional structure showed in Fig.1.

Certification(CA)

Publishing system

Registration
Authority(RA)

Secret key
management
center(KMC)

application interface

Key operation Certificate Operation

Certificate issuance

Certificate acquisition

Fig.1 PKI functional structure

F. DRBAC Role Assignment Process
a. Authentication
DRBAC combines the identity authentication of

PKI/PMI architecture to verify the legality of user identity.
When the user logs in to the application system, he/she first
performs user authentication, and if successful, he/she obtains
the permission attribute certificate and obtains it from the
LDAP server.

b. Access Control
According to the permit property certificate of role

permission information, information about role of inheriting,
the change of role mapping information and role constraints
of information constitute the current user authorization
information, to determine whether the user has the right to
access to the system resources

c. Configuration Management

Providing a convenient and friendly graphical user
interface for system administrators. System administrators can
perform user management, role management, rights
management, role/rights management, rule development, and
define inheritance and constraint policies.

d. Permission Attribute Certificate Authentication
When an access resource request is issued after the user

logs in to the system, authentication server to authenticate
user's rights attribute information, and according to the access
control policy, a determination is made to determine the
subsequent operation sequence.

IV. RAC FRAMEWORK BASED ON DRBAC

A．DRBAC Distributive Grammar
First, an object delegation is performed, and it’s used to

assign part of the privilege of OS to a user administrator, so
that the user administrator becomes the entity that assigns
roles. In this way of distributing authority, even if attacked,
only part of OS's permission is promised, not the whole root's
permission.

Eg：[Subject1→ OS. ssh] OS
Using an assignment of delegate, the privileges of a user

administrator with a part of the OS authority are allocated to
other users, so that the user administrator can assign
appropriate permissions according to the specific needs of the
user.

Eg：[Subject2→ Guser1. ssh’] subject1
Proxy entrustment: Suppose there are two heterogeneous

application systems, set as domain A and domain B. There is
a role R1 in the A domain, and a role R2 in the B domain. If
R1 wants to obtain the rights of role R2 in the B domain to
perform R2 operations, but R1 is not recognized in B domain,
then role R1 can request R2 to complete the corresponding
function and return the result to R1. R1 and R2 are actually a
relationship of proxy delegate. The role mapping mechanism
between domains can be implemented by proxy delegation
mechanism. Then achieve inter domain role cross domain
access, it is suitable for distributed systems.

This role inheritance method not only supports single
inheritance, but also supports multiple inheritance. A role can
inherit multiple roles at the same time, thereby inheriting the
rights of multiple roles. This can create new roles
conveniently on the basis of the original roles. The
characteristics of multiple inheritance make DRBAC have the
following two advantages: First, multiple complex roles can
be constructed by multiple inheritance of several simple roles
at the bottom (with fewer permissions). Second, multiple
inheritance features provide unified user / role assignment and
role inheritance relationship to application systems.

The most important extension of the distributed DRBAC
model to the traditional RBAC is to cross the mapping
between the roles of the system. A good role mapping
transformation mechanism between heterogeneous systems is
the key technology of DRBAC model.

The role mapping transformation between this domain and
outfield can be achieved by building two domain based role

237

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

inheritance trees. Then, the corresponding roles are
established to achieve the inter domain role mapping
transformation and cross domain access.

The role mapping between domains is showd in Fig.1.In
the inter domain role mapping model, the mapping of code 1
represents the transitive mappings from A1R1 to A0R0, as
follows: A1Rl->A0R0. Through this mapping, roles on A1R1
and above can be converted to role A0R0. In the role
inheritance hierarchy of H1. Because the role Admin1 >A1
can be mapped to A0R0 by mapping A1R1 ->A0R0 with
label 1. The mapping of label 2 is a non transitive mapping
from B1R1 to C0R0. Remember to do: B1R1-> (NT) C0R0.
NT indicates that the mapping is a non transitive map, which
means that B1R1 can be converted to C0R0. Although the
permissions of roles Admin1R1 and A1R1 are higher than
B1R1, the mapping of the label 2 is a non - transitive mapping,
so these two roles can not be converted to C0R0 by mapping
B1R1 ->C0R0.

Admin0

A0

C0

B0

D0

Admin1

A1

B1

C1

D1

1

H0: the level of local role
inheritance

H1: the level of field role
inheritance

Fig. 1 Role mapping between domains.

B. Specific Allocation Method.

a. Configure System Files
The different file systems used by the Linux system are not

accessed by the device identifier, instead they are connected
into a single tree structure that represents a file system with a
single unified entity. The kernel must support the ext2 file
system before operating on the kernel. We set
CONFIG_EXT2_FS to Y. The same configuration supports
file properties to set CONFIG_EXT2_FS_XATTR to Y,
configuration support ACL, configuration support ACL,
configuration support for on-chip execution, etc.

b. Compile The Kernel.
After compiling the kernel file, we obtain a strategy which

contains the data. Then we use the make command to compile
this strategy into a binary policy module (under Fedora 23
environment). Its security context is as followed: System_u:
object_r: semanage_ exec_t as is showed in Figure 2.

c. Authorize the Role
In order for the user administrator to have the ability to

grant roles to different users within Docker, administrator
needs to have the root user and the sysadm_t domain.
However, root and sysadm_t domain types cannot be directly
assigned to all user administrators. If the authority is granted
directly, the user administrator has the right to modify the
policy source code file directly, so that it has the authority to
grant all the roles. At this point, each role is authorized to
create a separate program named [role name] assign for the
user, and the program file attributes are set to have higher
authority.

Start

Configuration file system

Compiling kernel

Role authorization

Assigning roles for users

User role legal identity
authentication

End

Fig. 2 allocation flow chart.

Although the user administrator role dsm_r has sysadm_t, it
only has this type when executing the [role name] assign
program.And after the process is finished running, it no
longer has this type. Because the security context of the user
who has this role logs in is dsm_u: dsm_r: dsm_t, and dsm_t
itself has very limited permissions, it can only run [role name]
assign a type of file. After executing the file, SHELL
automatically fork a child process to perform the operation,
the child process will automatically inherit the parent
process's security context. Because of the automatic domain
conversion rules and the allowed domain transformation rules,
the domain types of the child processes are converted to
sysadm_t. After this permission is raised, the child process
can assign roles to other users (the user name is passed
through the command parameter). The revocation of user
roles is done in the same way.

d. Assigns Roles to Users
Two ordinary users A_u and B_u are created. At the same

time we specify the roles that these two users can be related to.
User B_u can only use the B_r role, while A_u can only use
A_r. A prefix is specified for the user's home directory type.
For user A, the administrator specify the user name and
extend the home directory to A_home_dir_t, and use

238

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

A_home_t for files in that directory. At this point, the
allocation of users and roles is completed. The description is
showed in Figure 3.

a.1_u a.2_u

A_r

b.1_u

B_r

A_t

A_work_t

B_t

B_work_t

Rolechange_t

Administrator_u

Administrator_r

Administrator_t

Administrator_work_t

Fig. 3 role assignment diagram

e. Role User's Legal Identity Authentication
When using proxy delegate, Docker users enter the access

control module to authenticated user identity. By querying the
LDAP directory server to verify whether it is a legitimate user.
If it is a legitimate system user, get the corresponding
attribute certificate for user binding. Otherwise, the user will
be denied access. After the identity is confirmed, the control
right is handed over to the access controller. The first step of
access control is to distinguish whether it is the local tenant or
the remaining tenants for local tenants, they get permission
from attribute certificates and go into the access control
decision modular. Otherwise, they should transform their
roles into local ones first, then determine the access control.
The access decision module, based on the current user's
permission information and the pre-defined access control
strategy, draws a decision conclusion. If the user has the
authority, it will be accessed; otherwise, the user will be
denied access. The implementation process of DRBAC is as
followed in Figure 4.

Identity authentication
module

Return
 authentication

results and certificates

USER

Identity
 authentication

module

Resource access
request

Access controller

Resource access
results

LDAP

Storage information

Agent

Agent

Own management
area 1

Own management
area 2

Fig. 4 implementation process of DRBAC

V. CONCLUSION

This paper introduced the advantages and disadvantages of
autonomic access control and mandatory access control in
traditional access control. The access control mechanism in
Docker was based on the traditional access control problem, a
framework of Docker container role access control
mechanism based on DRBAC was proposed. The framework
uses DRBAC access control technology to manage flexible
and to implement the system dispersedly features. To solve
Discretionary Access Control permission to address the
subject is too large, it leads to the problem of information
leakage, so that it can be applied in a more complex
hierarchical system. At the same time, due to strict
compliance with hierarchical rules, the flexibility of
mandatory access control is not enough, so it is both difficult
and important to apply in dynamic environment, and to
achieve cross-domain access between the roles of the domain,
applicable to multi-tenant in Docker. The implementation
shows that our mechanism works well to make up other
security access mechanisms.

REFERENCES

[1] Lu Tao, Chen Jie, Shi Jun. Research of Docker Security [J/OL].
computer technology and development, 2018 (06): 1-6 [2018-
05-03].

[2] Yang Wenlin, Tan Xi, Guo Junting, Wang Shuo. The
Vulnerability Analysis and Security Enhancement of Docker [J].
information security and technology, 2016,7 (04): 21-23+55.

[3] Wang Yu Ding, Yang Jiahai, Xu Cong, Ling Xiao, Yang Yang.
Survey on Access Control Technologies for Cloud Computing
[J]. software journal, 2015,26 (05): 1129-1150.

[4] Liu An. Cloud computing access control technology [J].
electronic technology and software engineering, 2018 (07): 183.

[5] Li Pingping, Chen Lijun. Research on Docker access control
mechanism based on LSM [J]. information technology, 2016
(11): 134-138+142.

[6] Jianghua. Research on SELinux Role一 based Access Control
Technology [D]. Huazhong University of Science and
Technology, 2009.

239

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:30-0500
	Preflight Ticket Signature

