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Abstract—Distributed adaptive networks achieve better esti-
mation performance by exploiting temporal as well as spatial
diversity. In this paper, we consider the problem of estimating
multiple optimal parameter vectors (also termed as tasks) un-
der correlated input, over a sensor network, where the nodes
within the same cluster are engaged in estimating a common
optimum parameter vector in distributed manner. For this,
we present an efficient multitask diffusion affine projection
algorithm (APA). The proposed scheme uses a regularized term
to promote similarity among the parameter vectors estimated by
neighboring clusters. Usage of APA makes the algorithm robust
against correlated input. We present important results on the
mean and mean square convergence of the proposed strategy.
Simulations are carried out to demonstrate the effectiveness of the
proposed algorithm. Compared to the non-cooperative APA, the
proposed multitask diffusion APA exhibits remarkably improved
performance in terms of both convergence rate and steady-state
MSD.

Index Terms—Multitask learning, distributed adaptive estima-
tion, cooperative learning, adaptive diffusion networks, affine
projection algorithm.

I. INTRODUCTION

Distributed adaptive estimation has emerged as an attractive

and challenging research area with the advent of multi-agent

networks. Consider a connected network consisting of N
agents (often called nodes) observing temporal data arising

from different spatial sources with possibly different statistical

profiles. The objective is to enable the nodes to estimate the

parameter vector of interest in a collaborative manner from the

observed data. In adaptive networks, the interconnected nodes

continuously learn and adapt, as well as perform the assigned

tasks such as parameter estimation from observations collected

by the dispersed agents. As the individual nodes share the

computational burden in distributed estimation schemes, the

complexities are reduced over centralized strategies with com-

parable estimation accuracy to the centralized solution [1],

[2]. The efficiency of the distributed adaptive estimation is

subject to the mode of cooperation among the nodes [3]. In

incremental mode of cooperation, each node transfers informa-

tion to its corresponding adjacent node in sequential manner

using a cyclic pattern of collaboration. Though this approach

reduces communication overhead, it is difficult to establish a

cyclic pattern as the number of sensor nodes increases [3].

On the other hand, in diffusion mode of cooperation [3],

each node k exchanges information with its neighborhood

Nk (i.e., the set of all neighbors including self) and obtain

more information than in incremental mode of cooperation.

Moreover, the diffusion mode of cooperation is robust against

link failures.

Depending on the number of parameter vectors to be

estimated, adaptive networks can be classified into single-task

and multitask networks. In a single-task network, all nodes

collaboratively estimate a single parameter vector (i.e., each

node is assigned the same task). In the context of single-

task estimation, several useful distributed strategies such as

incremental strategies [4], [5] and diffusion strategies [6]–[10]

have been proposed and analyzed in detail.

Beside single-task scenarios, in some applications, multi-

ple parameter vectors need to be estimated simultaneously

in collaborative fashion. For example, in distributed active

noise control application, agents need to estimate different

but related active noise control filters [11]. Similarly, in

applications like node-specific cooperative spectrum sensing

[12], node-specific speech enhancement and DOA estimation

[13], and study of tremor in Parkinson’s disease [14], node-

specific or multiple optimum parameter vectors need to be

estimated simultaneously in collaborative fashion. In a mul-

titask network, the nodes are grouped into clusters and the

nodes within the same cluster are engaged in estimating a

common parameter vector [15]–[17]. Different clusters gen-

erally have different (though related) tasks. The estimation

still needs to be performed cooperatively across the network

because the data across the clusters may be correlated and,

therefore, cooperation across clusters can be beneficial. This

concept is relevant to the context of distributed estimation

and adaptation over networks. In [18], a least mean square

(LMS) based multitask diffusion algorithm has been presented

and its performance is analyzed in detail. The performance

of the multitask diffusion LMS strategy has been studied in

the presence of random link failures and changing topology

by extending it to the asynchronous networks [19]. It is well

known that in the case of standalone adaptive filter, one major

drawback of the lest mean square (LMS) algorithm is its

slow convergence rate for colored input signals. For distributed

networks, highly correlated inputs thus severely degrade the

performance of the multitask diffusion LMS algorithm. The

affine projection algorithm (APA) [20] is a better alternative

to LMS in such an environment. In this paper, we propose an

APA based diffusion multitask estimation scheme to obtain

a good compromise between convergence performance and
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computational cost. The main contributions of the proposed

method include:

• A clustered multitask diffusion affine projection algo-

rithm to estimate the multiple tasks in a distributed

manner;

• Important results on mean and mean square convergence

of the proposed algorithm;

• Demonstration of the effectiveness of the proposed algo-

rithm through detailed simulations in system identifica-

tion context.

II. NETWORK MODEL AND PROPOSED ALGORITHM

A. Clustered Multitask Network

Consider a network with N nodes which are deployed

over a certain geographical area. At every time instant n,

each node k has access to time realizations {dk(n),uk(n)}
with dk(n) denoting a scalar zero mean reference signal and

uk(n) = [uk(n), uk(n−1), ..., uk(n−L+1)]T is a regression

vector. The objective is to estimate the L×1 unknown optimal

parameter vector w�
k at each node k in collaborative fashion.

In a clustered multitask network, the nodes are grouped

into Q clusters with Q ≤ N and nodes in each cluster Cq ,

q = 1, 2, · · · , Q, estimate a particular optimal vector w�
Cq

,

implying

w�
k = w�

Cq
, for k ∈ Cq. (1)

Similarities exist among the optimal parameter vectors of the

neighboring clusters, implying

w�
Cp

∼ w�
Cq

, if Cp,Cq are connected, (2)

where p and q denote two cluster indexes. Note that the

two clusters Cp and Cq are connected if there exists at least

one edge linking a node from cluster Cp to a node in the

cluster Cq . If all the nodes in the network are engaged in

estimating a single optimal parameter vector (i.e., w�
k = w�,

k = 1, 2, · · · , N ), then the clustered multitask network reduces

to a single-task network. On the other hand, if the cluster

size is one, i.e., each node k estimates its own parameter

vector, then the clustered multitask network reduces to a fully

multitask network.

B. Clustered Multitask Diffusion Affine Projection Algorithm

We consider here a clustered multitask network with N
nodes that are grouped into Q clusters. Each node k has access

to the input signal uk(n) and the observable output dk(n) that

are assumed to be related via a linear model

dk(n) = uT
k (n) w

�
k + ϑk(n), (3)

where w∗
k and uk(n) are same as defined above. The term

ϑk(n) is an observation noise with zero mean and variance

σ2
ϑ,k which is taken to be temporally and spatially i.i.d., and

independent of input ul(m) for all n, m and k, l. The nodes

that are grouped in the same cluster Cq , q = 1, 2, · · · , Q,

estimate the same L × 1 filter coefficient vector w∗
Cq

. We

use the notation C (k) to denote the cluster to which node k
belongs, meaning, C (k) ∈ {C1,C2, · · · ,CQ}.

In order to provide independence from fluctuations in input

statistics, at each node k, we introduce normalized updates

with respect to the input regressor uk(n). Assuming the

Hessian matrix of the local cost function Jk(wC (k)) which

is associated with node k is positive semi-definite, the local

cost function Jk(wC (k)) is defined as

Jk(wC (k)) = E

⎡⎣∣∣∣∣∣dk(n)− uT
k (n) wC (k)

‖uk(n)‖

∣∣∣∣∣
2
⎤⎦ . (4)

Consider two nodes k and l from two different clusters that

are mutually connected. Then, similar to clustered multitask

diffusion LMS [18], the Euclidean distance based regularizer

is enforced at node k to exploit the correlation among their

tasks and the squared Euclidean distance regularizer is given

by

Δ(wC (k),wC (l)) = ‖wC (k) −wC (l)‖2. (5)

Combining the local cost (4) and the regularizer (5) at each

cluster level, we will have the following regularized problem

in terms of Q Nash equilibrium problems [21], where each

cluster Cq estimates w∗
Cq

by minimizing the regularized cost

function JCq (wCq ,w−Cq ):

(P) : min
wCq

JCq (wCq ,w−Cq ) for q = 1, · · · , Q, (6)

where

JCq (wCq ,w−Cq ) =
∑
k∈Cq

E

⎡⎣∣∣∣∣∣dk(n)− uT
k (n)wC (k)

‖uk(n)‖

∣∣∣∣∣
2
⎤⎦

+ η
∑
k∈Cq

∑
l∈Nk\Cq

ρkl‖wC (k) −wC (l)‖2,

(7)

where w−Cq
denotes the collection of weight vectors es-

timated by the other neighboring clusters, i.e., w−Cq
=

{wC (l)|l ∈ Nk \ Cq, k ∈ Cq} and wC (k) = wCq
for k ∈ Cq .

The small positive constant η is the regularization strength

parameter and the symbol \ is the set difference operator. The

non-negative coefficients ρkl adjust the regularizer strength

between node k and l. As in [18], the non-negative coefficients

ρkl are chosen to satisfy the following conditions:

N∑
l=1

ρkl = 1, and

{
ρkl > 0, if l ∈ Nk \ C (k),

ρkl = 0, if l /∈ Nk \ C (k).
(8)

We also impose ρkk = 1 if Nk \ C (k) = ∅. Each cluster Cq

estimates wCq by minimizing JCq (wCq ,w−Cq ).

Following the same lines of [18], and extending the argu-

ment to apply to the problem (6), we will then have the Adapt-

Then-Combine(ATC) clustered multitask diffusion strategy in
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three successive stages as follows:

Adaptation:

ψ
′
k(n+ 1) = wk(n) + μ

uk(n)

ε+ ‖uk(n)‖2 ek(n),

Combination (inter-cluster):

ψk(n+ 1) = ψ
′
k(n+ 1) + μη

∑
l∈Nk\C (k)

ρkl
(
wl(n)−wk(n)

)
,

Combination (intra-cluster):

wk(n+ 1) =
∑

l∈Nk∩C (k)

alk ψl(n+ 1), (9)

where the combination coefficients alk are non-negative and

are given by

N∑
l=1

alk = 1, and

{
alk > 0, if l ∈ Nk ∩ C (k),

alk = 0, otherwise.
(10)

Several methods exist in literature to select the coefficients alk
such as averaging rule, Metropolis rule etc. [1].

One of the major limitations of the NLMS algorithm is

its slow convergence rate for highly correlated input signals.

In such environments, the Affine Projection Algorithm (APA)

[20] is a better alternative to NLMS. As seen earlier, the APA

updates the weight vector using the current input regressor vec-

tor along with the P−1 past input regressor vectors (P : projec-

tion order), whereas the NLMS uses only current input regres-

sor vector. The adjustment term μ
uk(n) ek(n)

ε+ ‖uk(n)‖2 of the NLMS

weight vector updation is replaced in APA by the more gen-

eralized term μ Uk(n)
(
εIP +UT

k (n)Uk(n)
)−1

ek(n), where

I is the identity matrix, ε is a small positive constant used to

avoid the inversion of a rank deficient matrix UT
k (n)Uk(n),

Uk(n) =
[
uk(n),uk(n− 1), · · · ,uk(n−P +1)

]
is the input

signal matrix, dk(n) = [dk(n), dk(n − 1), · · · , dk(n − P +
1)]T is the desired response vector and ek(n) = dk(n) −
UT

k (n)wk(n) ≡ [ek(n), ek(n − 1), · · · , ek(n − P + 1)]T ,

k = 1, 2, · · · , N is the error vector.

To make the system more robust against correlated input,

we then extend the above clustered multitask diffusion NLMS

strategy to APA. From (9), we can obtain the following

ATC based clustered multitask diffusion Affine Projection

Algorithm:

Adaptation:

ψ
′
k(n+ 1)=wk(n) + μUk(n)

(
εIP +UT

k (n)Uk(n)
)−1

ek(n),

Combination (inter-cluster):

ψk(n+ 1) = ψ
′
k(n+ 1) + μη

∑
l∈Nk\C (k)

ρkl
(
wl(n)−wk(n)

)
,

Combination (intra-cluster):

wk(n+ 1) =
∑

l∈Nk∩C (k)

alk ψl(n+ 1). (11)

It is seen that when P = 1, the clustered multitask diffusion

APA (11) reduces to the clustered multitask diffusion NLMS

(9).

III. PERFORMANCE ANALYSIS

In this section, we present some important results on the

convergence of the proposed clustered multitask diffusion

strategy. For this, we define the network level optimal filter

coefficient vector w�, estimated filter coefficient vector w(n),
input data matrix U(n) and the observation noise vector ϑ(n)
as follows:

w� = col
{
w�

1,w
�
2, · · · ,w�

N

}
,

w(n) = col
{
w1(n),w2(n), · · · ,wN (n)

}
,

ϑ(n) = col
{
ϑ1(n),ϑ2(n), · · · ,ϑN (n)

}
,

U(n) =

⎡⎢⎢⎢⎣
U1(n) 0 · · · 0

0 U2(n) · · · 0
...

...
. . .

...

0 0 · · · UN (n)

⎤⎥⎥⎥⎦ ,

(12)

where col{.} is used to denote the column wise stacking

operator. From these definitions, network level data model is

given by

d(n) = col
{
d1(n),d2(n), · · · ,dN (n)

}
= UT (n)w� + ϑ(n),

(13)

and the global error vector is given by

e(n) = col
{
e1(n), e2(n), · · · , eN (n)

}
= d(n)−UT (n)w(n).

(14)

Using these definitions, at network level, the weight update

recursion of the proposed clustered multitask diffusion APA

can then be stated as follows:

w(n+ 1)=A(
w(n) + μU(n)

(
εIPN +UT (n)U(n)

)−1
e(n)

)
− μ η A Q w(n),

(15)

where

A = AT ⊗ IL,
Q = ILN − P ⊗ IL,

(16)

with ⊗ denoting the right Kronecker product operator (i.e., for

two matrices X and Y of size M×N and L×K respectively,

X⊗Y is a block matrix of size ML×KN , with the (i, j)th

block given by xijY, i = 1, 2, · · · ,M, j = 1, 2, · · · , N ), A
with [A]l,k = alk is a N ×N left stochastic matrix (i.e., each

column consists of non-negative real numbers whose sum is

unity) that defines the network topology, and P with [P]k,l =
ρkl is a N ×N asymmetric right stochastic matrix (i.e., each

row consists of non-negative real numbers whose sum is unity)

that defines regularizer strength among the nodes.

Denoting the global weight deviation vector of the proposed

clustered multitask diffusion APA at nth index as w̃(n) =
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w�−w(n), recalling that Aw� = w�, from (15), the recursion

for w̃(n) can then be written as

w̃(n+ 1) =

B(n)w̃(n)− μAU(n)
(
εIPN +UT (n)U(n)

)−1
ϑ(n) + r,

(17)

where B(n) = A(
ILN − μZ(n) − μηQ)

with Z(n) =

U(n)(εIPN +UT (n)U(n)
)−1

UT (n) and r = μηAQw�.

To obtain the results on convergence of the proposed

clustered multitask diffusion algorithm, we make the

following assumptions :

Assumption 1: The data signal uk(n) arises from a random

process that is temporally stationary with correlation matrix

Ru,k = E[uk(n)u
T
k (n)], and also the data matrices Uk(n),

k = 1, 2, · · ·N are spatially independent.

Assumption 2: The observation noise ϑk(n) is taken to be

spatially and temporally i.i.d. Gaussian with mean zero and

variance σ2
ϑ,k.

Assumption 3: The network topology is assumed to be static,

meaning the combiner coefficients are constant throughout

the process.

Assumption 4: The step size μ is sufficiently small so that

the terms involving higher order moments of μ in in the

matrix F = E
[B(n) ⊗b B(n)

]
(⊗b denotes the right block

Kronecker product operator [22]) can be ignored.

The above assumptions are commonly used in the analysis

of diffusion adaptive strategies to simplify derivations and they

do not alter the operation of the algorithm.

Theorem 1. Convergence in the mean: Assuming the data
model (13) and the Assumptions 1-3 to hold, a sufficient
condition for the proposed clustered multitask diffusion APA
to converge in mean is

0 < μ <
2

max
1≤k≤N

{
max
1≤i≤L

{λi( Zk)}
}
+ 2 η

, (18)

where Zk = E
[
Uk(n)

(
εIP +UT

k (n)Uk(n)
)−1

UT
k (n)

]
with

λi(·) denoting the i-th eigenvalue of its argument matrix.
E[Zk(n)] is independent of n due to stationarity of uk(n).
As a result, we have dropped the index n from Zk.

Proof: Skipped due to page limitation.

Theorem 2. Convergence in the mean square: Assuming the
data model (13) and the Assumptions 1-4 to hold, the proposed
clustered multitask diffusion APA converges in mean square
sense if the matrix F = E

[B(n) ⊗b B(n)
]

is stable, which
is guaranteed under

0 < μ <
1

max
1≤k≤N

{
max
1≤i≤L

{λi( Zk)}
}
+ 2 η

. (19)

Proof: Skipped due to page limitation.

IV. SIMULATION STUDIES AND DISCUSSION

In this section, we demonstrate performance of the proposed

clustered multitask diffusion algorithm via simulation studies.

For simulation, we considered a clustered multitask network

consisting of N = 21 nodes with the topology shown in

Fig. 1. The nodes in the network are grouped in 4 clusters:

C1 = {1, 2, 18, 19, 20, 21},C2 = {12, 13, 14, 15, 16, 17},

C3 = {8, 9, 10, 11} and C4 = {3, 4, 5, 6, 7}. These clusters

aim to estimate their respective 256 tap optimal vectors in

collaborative fashion which are chosen as, w∗
Cq

= w0+δCqw0

for q = 1, 2, 3, 4, with δC1 = 0, δC2 = −0.025, δC3 = 0.05
and δC4 = −0.05. The coefficient vector w0 is generated from

zero mean, unity variance Gaussian distribution.
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Fig. 1. Network Topology
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Fig. 2. Statistical settings of the network: a). coefficient value of AR(1) model
θk; b). noise variance σ2

ϑ,k .

Simulations are conducted for colored Gaussian input of

unit variance, where at each node k, a unity variance colored,

Gaussian input uk(n) is generated by driving the following

first order auto regressive (AR) model: uk(n) = θk uk(n −
1) +

√
1− θ2k zk(n), |θk| < 1, with a unity variance, white

Gaussian input zk(n). The coefficient θk varies from node to

node and its distribution against the node index k is shown in

Fig. 2(a). The observation noise ϑk(n) is taken to be zero
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mean, i.i.d. Gaussian with variance σ2
ϑ,k, which is plotted

against k in Fig. 2(b).
At each node, the projection order is fixed at P = 4 and the

initial values of the taps are taken to be zero. The step size μ is

set at 0.5 for all the nodes. Similar to [18], the regularization

coefficients ρkl are set to ρkl = |Nk \ C (k)|−1 (where | · |
denotes the cardinality of the set) for l ∈ Nk \ C (k) and

ρkl = 0 for any other l (ρkk = 1 if Nk \ C (k) = ∅). The

combining coefficients alk are obtained using the Metropolis

rule [1]. Detailed simulations are carried out to study the

performance of several learning scenarios such as 1). Clustered

multitask diffusion APA; 2). Multitask diffusion APA (which is

obtained by assigning a cluster to each node and setting η 
= 0
and the combiner matrix A = I in the clustered multitask

diffusion APA); 3). Non-cooperative APA (which is obtained

by setting η = 0 and the combiner matrix A = I in the

clustered multitask diffusion APA).
The simulation results are displayed by plotting the network

level normalized MSD (in dB) against the iteration index n,

obtained by averaging over 100 independent experiments. The

resulting plots, which are popularly known as learning curves

are shown in Fig. 3.
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Fig. 3. Learning curves of the proposed clustered multitask diffusion APA
strategy at network level.

From Fig. 3, several observations can be made as described

below:

1) As the nodes do not collaborate for additional benefit,

the non-cooperative APA exhibits poor performance in

terms of convergence rate and steady-state MSD.

2) In multitask diffusion APA, the regularization term in

adaptation stage enables inter-cluster cooperation among

nodes, leading to improved performance over non-

cooperative APA.

3) In clustered multitask diffusion APA, the presence of

both inter-cluster cooperation and intra-cluster cooper-

ation help to achieve improved performance over the

aforementioned strategies such as multitask and non-

cooperative APA.

To investigate the effects of η on the performance of

clustered multitask diffusion APA and multitask diffusion APA

(i.e, A = I), the above simulation exercise was carried out for

different values of η. The corresponding learning curves are

shown in Figs. 4(a) and 4(b) for clustered multitask diffusion

APA and multitask diffusion APA, respectively.
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Fig. 4. Learning curves of the proposed strategy at network level for different
values of η: (a). clustered multitask diffusion APA; (b). multitask diffusion
APA

From Fig. 4(a), it can be observed that for η = 0 (i.e.,

absence of inter-cluster cooperation), the clustered multi-

task diffusion APA shows superior performance over non-

cooperative strategy in terms of both convergence rate and
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steady-state MSD by exploiting the intra-cluster collaboration

alone. As η increases, say to η = 0.0007, the presence of inter

cluster collaboration along with the intra-cluster collaboration

results in further improvement in performance. However, as

η increases still further, say to η = 0.006, the convergence

rate of course increases, but with considerable degradation

in steady-state MSD. It is also seen that for η = 0.006, the

steady-state MSD of the clustered multitask diffusion APA is

at par with that for the non-cooperative strategy, though the

convergence rate is greatly improved. Beyond this point, e.g.,

for η = 0.01, it is seen that the steady-state MSD degrades

further with no improvement in convergence rate.

Similarly, from Fig. 4(b), it can be observed that for

η = 0.001, the multitask diffusion APA exhibits superior

performance over non-cooperative strategy in terms of both

convergence rate and steady-state MSD. However, as η in-

creases, say to η = 0.006, the convergence rate increases

further with slight degradation in steady-state MSD. Infact,

for η = 0.006, the steady-state MSD of the multitask diffusion

APA is at par with that for the non-cooperative strategy, though

the convergence rate is greatly improved. Beyond this point,

as η increases further, we observe very little improvement in

convergence but significant degradation in steady-state MSD

performance. Beyond the value of η = 0.05, it is seen that

the steady-state MSD degrades further with no improvement

in convergence rate.

From the above results, it can be seen that the performance

of clustered multitask diffusion APA and multitask diffusion

APA is greatly dependent on the value of regularization

strength η. Since the neighboring cluster tasks are only having

some kind of similarity relationship, but are not exactly same,

the inter-cluster cooperation has to be terminated near con-

vergence. However, the clustered multitask diffusion strategy

continues the inter-cluster cooperation even in the steady-state

and the degree of cooperation is in proportion to the value of

η. Due to this lack of control on inter-cluster cooperation, the

steady-state MSD performance of clustered multitask diffusion

APA deteriorates.

V. CONCLUSION

In this paper, we presented a clustered multitask diffu-

sion strategy for simultaneously estimating the multiple tasks

over distributed adaptive networks. The proposed clustered

multitask diffusion strategy is robust against the correlated

input conditions. By exploiting both inter-cluster cooperation

and intra-cluster cooperation, the proposed clustered multi-

task diffusion APA achieves improved performance over non-

cooperative strategy in terms of convergence rate and steady-

state MSD. The performance of the proposed strategy is

demonstrated through detailed simulations.
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