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Abstract—Since the introduction of deep neural network
(DNN)-based acoustic model to automatic speech recognition
(ASR), robust ASR using DNN are being in research. However,
most DNN-based techniques are performed without consideration
of the reliability of the estimates and this degrades the ASR
performance especially in the training-test mismatch conditions.
In this paper, we propose a novel deep learning-based acoustic
modeling technique which measures and takes account of the
reliability using a single DNN. The proposed approach describes
the mapping between the noisy input and clean features as a
stochastic process. Therefore, a statistical modeling is applied
to the DNN-based acoustic model in predicting the posterior
distribution of the clean speech features given a distorted input
data. Also, by attempting the two different probabilistic models
in clean feature distribution assumption, we investigate which
distribution is more proper on various environment conditions.
It has been shown that the proposed technique outperforms
the conventional DNN-based techniques on Aurora-4 DB and
mismatched noise conditions.

I. INTRODUCTION

In recent years, deep learning has been prevalent in signal
processing and it has become an opportunity for automatic
speech recognition (ASR) to progress. Especially in acoustic
modeling, introduction of the deep neural network (DNN)-
hidden Markov model (HMM) system which represents the
relationship between the observed acoustic features and HMM
states using DNN instead of Gaussian mixture model (GMM)
is considered as a breakthrough [1], [2], [3]. This is attributed
to the DNN’s capability in automatically learning complicated
non-linear mapping from the input to the target vectors.
If a sufficient amount of training data is available, more
complicated input-target relationship can be easily learned by
using wider and deeper neural network architectures [4].

Interest in the efficient learning capability of DNN has
also been expanded to the robust ASR. Traditionally, the
approaches to noise robustness can be divided into two cate-
gories: front-end (FE) and back-end (BE) techniques. The goal
of FE techniques is to compensate the effect of distortions
on the observed input features. While the conventional FE
techniques [5], [6], [7], [8] are based on some specific models
or formulations to account for the complicated corruption
process from the clean to distorted speech features, the DNN-
based FE techniques [9], [10], [11], [12] let the networks
directly map the corresponding clean targets from the distorted
inputs.

Meanwhile, BE methods modify the acoustic models to
match the incoming input features better. In BE technique
training, it is important to make the acoustic model parameters

take the environmental characteristic into account effectively.
Among various DNN-based BE researches, adaptation tech-
niques employing auxiliary features with acoustic context
information have shown remarkable performances due to its
easy implementation and performance [13], [14], [15]. When
both FE and BE techniques are implemented by deep learning-
based models, the ASR system performance can be enhanced
further via joint optimization technique which concatenates the
separated two networks together and fine-tuning with a single
objective function (e.g., cross-entropy) [16], [17], [18], [19].

Meanwhile, in spite of the performance, the aforementioned
DNN-based techniques still have an important weakness. The
estimation of clean features or the phonetic targets from
the aforementioned DNN-based techniques is performed in a
point-wise manner, i.e., the DNN mapping from the input to
the corresponding target is described as a deterministic pro-
cess. However, in a realistic scenario, the test data sometimes
contains unseen corruption sources in the training data and the
DNN estimator cannot consider these new type of distortion
patterns. Eventually, the accuracy of the estimator decreases
and this degrades the overall performance of the ASR system.
A promising way to compensate this problem may be to extract
some information relevant to the reliability of the estimated
target and then to apply this to the decoding process.

In this paper, a novel approach to DNN-based acoustic
modeling which can be a solution to the aforementioned
reliability issue is proposed. The proposed approach describes
the relationship between the noisy input and clean features as
not a deterministic but a stochastic process. We assume that
the clean speech features given noisy input features follow a
specific probabilistic model. Then, the parametric information
of the probabilistic model is estimated via DNN mapping and
directly employed to the DNN-based HMM state prediction.
Therefore, we design a DNN-based acoustic model employing
the parameters of estimated clean feature distributions.

In order to apply statistical model to DNN-based acoustic
model, two different versions of interpretations on the re-
constructed clean feature distribution are proposed. Although
Gaussian or GMM are most frequently used in conventional
speech signal modeling, we cannot be certain whether this is
the optimal approach especially to the DNN-based acoustic
models. For this reason, another well-known probabilistic
model, Laplacian is adopted as the alternative to Gaussian. By
employing the different acoustic modeling approaches based
on two different probabilistic models, we can investigate where
distribution is more proper on various environment conditions.
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The performance of the proposed approach is evaluated
on the Aurora-4 DB and also in some mismatched noise
conditions, and the better performance was observed compared
to the conventional DNN-based acoustic modeling techniques.

The organization of the paper is as follows: we first briefly
review prior works on DNN-based techniques for robust ASR
in Section II. The proposed technique is introduced in Section
III. The experiments and results are given in Section IV.
Finally, Section V concludes the paper.

II. PRIOR WORKS ON DNN-BASED TECHNIQUE FOR
ROBUST ASR

Let us denote an observed noisy feature extracted at the
t-th frame, the corresponding unknown clean feature and
the HMM state identity as yt , xt and qt , respectively.
Additionally, we define xm1:m2 as a subsequence of vectors
[x′m1

x′m1+1 · · ·x′m2
]′ with the prime representing matrix or

vector transpose.
Under the general framework of HMM-based recognition,

we assume that there exists an unknown underlying function
that approximates the posterior probabilities of the HMM
states given as follows:

p(qt |yt) ∼= f(yt−τ :t+τ ) (1)

where f(·) represents the function that maps the noisy and
noise features to the corresponding HMM state identity which
contains phonetic information and the subscript τ represents
the temporal coverage which is required for figuring out the
contextual information of the speech signal. In the multi-
condition DNN-HMM which is the most basic DNN-based
BE technique [13], the function f(·) is directly learned based
on a collection of noisy data using DNN.

On the other hand, the DNN-based FE techniques map the
noisy features into the corresponding clean features via a DNN
and the obtained clean feature estimates are fed to the acoustic
model. This can be described as

p(qt |yt) ∼= p(qt |g(yt−τ :t+τ )) (2)

where the output of g(·) is a stream of clean feature estimates,

x̂t−τ :t+τ = g(yt−τ :t+τ ). (3)

In (2) and (3), g(·) is a DNN dealing with the mapping from
the noisy to the clean speech features. Furthermore, DNN-
based FE and BE techniques can be employed together as
following formulation.

p(qt |yt) ∼= h ◦ g(yt−τ :t+τ ), (4)

and

p(qt |yt) ∼= h(x̂t−τ :t+τ ). (5)

Here, h(·) represents a DNN predicting the phonetic target
based on the clean speech feature stream. This combination
of DNN-based FE and BE techniques can be further improved
through joint training [16], [17], [18], [19].

Meanwhile, the DNN-based implementation of g(·) is usu-
ally performed by minimizing the mean squared error (MSE)
function which is given by

JMSE =
1

T

T∑
t=1

||xt − x̂t||2 (6)

where T denotes the number of training samples. Since DNN-
based FE technique reconstructs clean features under the
assumption that the relationship between noisy input and clean
target follows a deterministic process, we call this FE network
as deterministic network (DE).

However, despite their success in robust ASR, the perfor-
mance of these approaches usually degrades when there exist
some mismatches between the training and test data. While the
training data set is limited to rather narrow environments, the
test data may undergo distortions not observed in the training
data.

III. PROPOSED TECHNIQUE

In order to supplement the problem in Section II, the
proposed DNN is constructed by concatenating two individu-
ally fine-tuned DNNs and training the unified DNN jointly
as shown in Fig. 1. The first DNN is applied to estimate
the statistical parameters. We call this DNN the stochastic
network (SN) since it extracts stochastic information of the
probabilistic model. The second DNN which is called the
prediction network (PN), deals with modeling the relationship
between the output of SN and the phonetic target.

A. Stochastic Network

SN estimates the parametric information of the clean feature
distribution given the noisy input feature p(xt |yt). In order
to accomplish this, SN is trained to maximize the likelihood
of the estimated clean distribution. Therefore, the objective
function of SN JSN can be formulated as follows:

JSN =
1

T

T∑
t=1

log p(xt |yt). (7)

Here, JSN can be different depending on the distribution as-
sumption with respect to p(xt |yt). In this paper, two different
versions of SN are proposed: Gaussian stochastic network
(GSN) and Laplacian stochastic network (LSN).

In training GSN, p(xt |yt) is given by Gaussian pdfs where
each component of xt is uncorrelated as in (8).

p(xt |yt) = N (xt ;µxt (yt),Σxt (yt)) (8)

with

Σxt
=


σ2
xt,1

0 ... 0

0 σ2
xt,2

... 0
...

...
...

0 0 ... σ2
xt,Dx

 . (9)
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Fig. 1. The structure of stochastic network.

Fig. 2. The structures of deterministic, Gaussian and Laplacian stochastic networks.

Therefore, the objective function of Gaussian stochastic net-
work (GSN) JGSN is as follows:

JGSN =
1

T

T∑
t=1

Dx∑
d=1

−log (σx̂t,d

√
2π)−

(xt,d − µx̂t,d
)2

2σx̂t,d
2

(10)

where xt,d , µx̂t,d
and σx̂t,d

are the d -th elements of xt , µx̂t

and σx̂t
, mean and standard deviation of clean feature estimate,

respectively. The output vector oGSNt of GSN is given by:

oGSN
t = [µx̂t

′, log(σx̂t
)
′
]′ (11)

where

σx̂t
= [σx̂t,1

′, σx̂t,2

′, ..., σx̂t,Dx

′]′. (12)

Meanwhile, LSN defines p(xt |yt) as Laplacian pdfs where

the each components of xt is uncorrelated as in (13).

p(xt |yt) = L(xt ; νxt (yt), bxt (yt)) (13)

Therefore, the objective function of LSN JLSN is as follows:

JLSN =
1

T

T∑
t=1

Dx∑
d=1

− log (2bx̂t,d
)−
|xt,d − νx̂t,d

|
bx̂t,d

(14)

where νx̂t,d
and bx̂t,d

are the d -th elements of νx̂t
and bx̂t

,
respectively. The output vector oLSNt of LSN is given by:

oLSN
t = [νx̂t

′, log(bx̂t
)
′
]′ (15)

where

bx̂t
= [bx̂t,1

′, bx̂t,2

′, ..., bx̂t,Dx

′]′. (16)
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Comparison about network structures and objective function
of two stochastic networks and DN is represented in Fig. 2.

B. Prediction Network and Joint Training

Once the training of stochastic network is completed, we can
implement the acoustic modeling which considers the reliabil-
ity of the clean feature estimates. In the stage of prediction
network training, the network learns the mapping between the
output vector of the GSN or LSN and the corresponding one-
hot encoding label which contains information of the HMM
states. Through the mapping, the prediction of the posterior
probabilities of the HMM states considering the reliability of
clean feature estimates can be performed.

After the prediction network is optimized, the stochastic
and prediction networks are concatenated together to form
a single unified DNN. Then, the unified network is trained
jointly according to the cross-entropy criterion. Specifically,
the error signal between the output of the unified DNN and
the corresponding phonetic target flows back to the prediction
and stochastic networks, and consequently trains all the param-
eters. With this series of processes, learning the relationship
between the noisy features and the corresponding HMM state
can be enhanced by guiding the DNN through the intermediate
level features, i.e., the parametric information of the clean
estimates.

By applying this training scheme, it is expected that the
parameters of stochastic network contribute to more sophisti-
cated HMM state estimation given observed input. Especially,
the variance related terms such as log(σx̂t

) and log(bx̂t
) in

(11) and (15) may take roles of auxiliary features providing
reliability information of estimated mean terms like (µx̂t

) and
(νx̂t

).

IV. EXPERIMENTS

To evaluate the speech recognition performance of the
proposed approach, we performed a series of experiments in
Aurora-4 DB [20]. In order to verify the performance of the
proposed technique, conventional DNN-based acoustic model-
ing techniques were implemented and their performances were
compared with that of the proposed approach. In addition
to the ASR performance evaluations of all the DNN-based
techniques in training-test matched conditions on noisy type,
the evaluations in mismatched conditions were conducted.

A. Aurora-4 DB and GMM-HMM system

Aurora-4 DB[20] was made based on the Wall Street Journal
(WSJ) DB with 5k-word vocabulary. The corpus has two train-
ing sets: clean- and multi-condition. Both clean- and multi-
condition sets are composed of the same 7138 utterances.
While clean-condition set deals with only a speech without any
distortion, multi-condition set includes a combination of clean
speech and speech corrupted by one of six different types of
noises (car, babble, restaurant, street, airport and train station)
at a range of signal-to-noise ratios (SNRs) between 10 and 20
dB.

The test sets including 330 utterances from 8 speakers. The
sets were corrupted by the same six noises used in the training
set at SNRs between 5 and 15 dB, creating a total of 14 test
sets. These 14 sets were then grouped into 4 subsets based
on the type of distortions: none (clean speech), additive noise
only, channel distortion only and noise + channel distortion.
For convenience, we denote these subsets by A, B, C and D,
respectively. It is notable that the types of noises are common
across training and test sets but the SNRs of the data are not.

In these experiments, we used multi-condition training data
for training all the DNN-based techniques and the GMM-
HMM system. The number of utterances used for HMM
training was 7138. The input features for GMM-HMM were
39-dimensional MFCC features (static plus first and sec-
ond order delta features) and cepstral mean normalization
was performed. The multi-condition GMM-HMM system was
trained with 2006 senones and 15026 Gaussian mixtures in
total. We used the Kaldi speech recognition toolkit [21] for
feature extraction, GMM-HMM training, alignment, and ASR
decoding.

B. Stucture and training of DNNs

All the deep learning-based techniques were implemented
by Keras [22] and trained using the ADADELTA optimization
technique [23]. Also, dropout [24] with a fraction of 0.2 and
L2 regularization with a weight of 0.00002 were applied for
training all the networks. For training all the DNN-based
acoustic models, log mel filterbank (FBANK) feature of 24-
dimension was used. As in the case of MFCC feature above,
both the first and second-order derivative of FBANK features
were used.

In order to evaluate the performance of the proposed ap-
proach, four different methods of DNN-based acoustic mod-
eling were trained. The compared techniques are
• Baseline: Multi-condition DNN-HMM,
• Deterministic: Conventional DNN-based acoustic model-

ing using the clean feature estimates obtained from the
DE as intermediate features [16],

• Gaussian: GSN-based DNN-HMM,
• Laplacian: LSN-based DNN-HMM.

The input layer of all the techniques identically had a total
of 792 visible units obtained by windowing 11 consecutive
LMFB features, i.e., τ was set to be 5. Also, all the techniques
had 7 hidden layers and a softmax output layer of 2006 units
corresponding to senones, respectively. Each hidden layer of
Baseline consisted of 2048 rectified linear units (ReLUs).

All the techniques except for Baseline aim to guide the
mapping from the observed input to the corresponding HMM
state via each of the intermediate feature layers. When it
comes to the techniques including Deterministic, Gaussian
and Laplacian, these techniques have their own enhancement
networks and corresponding PNs. Gaussian and Laplacian
exploits the mean and variance terms of xt as the intermediate
features at the fourth hidden layer, i.e., GSN and LSN have
3 hidden layers with 2048 ReLU nodes, respectively. Then,
two different stochastic networks respectively concatenate with
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their PNs, which have 3 hidden layers with 2048 ReLU nodes
and 2006-dimension softmax output layers, and are trained
jointly in unified networks. Meanwhile, in a practical imple-
mentation on the output representations of GSN and LSN,
we modified oGSN

t and oLSN
t for considering the contextual

coverage of the observed input yt−τ :t+τ . The modified oGSN
t

and oLSN
t are represented as follows:

oGSN
t = [µx̂t−τ:t+τ

′, log(σx̂t−τ:t+τ )
′
]′ (17)

oLSN
t = [νx̂t−τ:t+τ

′, log(bx̂t−τ:t+τ )
′
]′ (18)

Therefore, GSN and LSN of Gaussian and Laplacian has
output layers with a total of 1584 linear units including mean-
and variance-related terms of 792 dimensions, respectively.

Deterministic exploits the clean feature estimates, i.e, the
output of the DN x̂t−τ :t+τ , as the intermediate features at
the fourth hidden layer. Therefore, It may safely be said
that Deterministic is constructed by replacing GSN or LSN
in Gaussian or Laplacian with DN. Mini-batch size for the
ADADELTA algorithm was set to 512 for all the techniques.
The learning rate was set to be 1 for training all the networks,
except for the cases of joint training where the learning rate
was set to be 0.1. Training of each network was stopped after
20 epochs.

C. Performance evaluations on Aurora-4 DB

We evaluated the performance on Aurora-4 DB. The word
error rates (WERs) of the four techniques are shown in Table
I. We can see that both Laplacian and Gaussian outperformed
the conventional techniques including Baseline and Determin-
istic in almost every condition. In case of Laplacian, the
average relative error rate reductions (RERRs) over Baseline
and Deterministic are 13.30% and 6.10%, respectively. It
demonstrates that the variance-related terms of clean estimate
distribution obtained from the proposed technique obviously
helps the DNN-based acoustic models to supplement the
reliability issue of the estimation. Also, comparing Laplacian
with Gaussian, the performance of Laplacian in noisy subset
including B and D was slightly better than those of Gaus-
sian. The average relative error rate reductions (RERRs) of
Laplacian over Gaussian was 3.46%.

D. Performance evaluations on mismatched noise conditions

To evaluate the proposed technique in the training-test
mismatched noise conditions, we made the noise-mismatched
test sets by mixing the clean speech of test set with six noises
included in 100 non-speech environmental sounds [25]. Four
types of noise were chosen from 100 noise types : clap,
cough, crowd, machine, siren and phone dialing. Applying
the same configurations of Aurora-4 DB, each noises were
added to the test sets at SNRs between 5 and 15 dB with
an equal rate. From the results in Table II, we can see that
the proposed approach is also effective in the mismatched
noise conditions. Although the gap between the proposed and
conventional techniques is not that huge comparing with that
in matched noise condition, the average RERRs of Laplacian

TABLE I
WERS (%) ON THE COMPARED ACOUSTIC MODELING TECHNIQUES FOR

TEST DATA ON AURORA-4 DB.

Method A B C D Avrg.

Baseline 3.12 7.43 7.33 17.84 11.58

Deterministic 2.97 6.60 6.13 16.81 10.69

Laplacian 2.75 6.18 5.59 15.81 10.04

Gaussian 2.75 6.30 6.02 16.50 10.40

TABLE II
WERS (%) ON THE COMPARED ACOUSTIC MODELING TECHNIQUES FOR

NOISE-MISMATCHED TEST DATA.

Method Clap Cough Crowd Machine Phone Siren Avrg.

Baseline 14.12 21.32 17.37 18.89 18.06 14.38 17.36

Deterministic 12.58 19.91 15.22 16.24 15.78 12.26 15.33

Laplacian 12.04 18.93 14.52 16.01 15.39 12.01 14.82

Gaussian 11.96 18.35 14.59 15.97 15.27 11.86 14.67

and Gaussian over Deterministic were 3.33% and 4.31%,
respectively.

V. CONCLUSIONS

In this paper, a novel deep learning-based acoustic modeling
technique for estimation reliability problem was proposed. In
order to consider the estimation inaccuracy in the training-
test environment mismatch condition, the proposed technique
designed DNN-based acoustic modeling which describes the
mapping between the noisy observed features and the pho-
netic target as the stochastic process. The proposed technique
estimates the clean estimate parameters of two well-known
statistical models: Gaussian and Laplacian. According to the
maximum likelihood (ML) criterion which was driven from
each of the probabilistic models, the network outputs mean
and variance-related terms and applies those to acoustic mod-
eling. Through a series of experiments on Aurora-4 DB and
mismatched noise conditions, we have found that the proposed
technique outperforms the conventional acoustic modeling in
word accuracy on both matched and mismatched conditions.
Future study will deal with techniques considering other
statistical models such as Gamma distribution.
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