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Abstract— Good teachers recognize how each of their students 
is different from the others and adapt how they support them. We 
replicate such a capability to understand the individual 
specificities of children. Our approach observed the social signals 
of fifth graders based on their daily classroom behavior using a 
sensor network. We used depth cameras to track their positions 
and identified them with RGB cameras. We observed 84 children 
(three classes) and used these results to estimate school-related 
children’s characteristics: self-efficacy, performance-goal, and 
exam scores. The estimation yielded 73.0-74.7% accuracy for the 
target variables.  

I. INTRODUCTION 

Previous studies explored the potential use of social robots 
in classrooms. For instance, they were used for language 
education in a classroom [1, 2]. Social supportive behavior 
improves the teaching of foreign languages [3]. Howley et al. 
found that it was easier for students to get help from a robot 
teacher than a human teacher [4]. These studies show a 
promising direction to use social robots for supporting 
children’s learning. 

Previous research also unveiled the possibility to use social 
robots to support children’s social life. For instance, Woods et 
al. explored how differently children talk to robots about their 
bullying and/or victimization experiences [5]. Bethel et al. 
concluded that since children’s memory as an eyewitness is 
less influenced by a robot interviewer than a human, a robot 
could be used to investigate sensitive events [6]. Previous 
studies indicated that a robot can be a close partner for children. 
Tanaka et al. revealed that a robot successfully interacted with 
children for five months and was accepted as a peer [7]. 

However, a relatively underexplored topic is how to 
‘understand’ an individual child in a school or other group 
settings. For instance, teachers comprehend the academic skill 
and the personality of their students [8]. Such ‘understanding’ 
would be useful for social robots, too. One pioneering finding 
was reported by Leyzberg et al. who argued that tutoring 
performance is improved when a robot adapts its teaching 
strategy to individuals [9]. Nevertheless, little is known about 
how a robot grasps children's school-related personal traits.  

 

Fig. 1 Differences of children’s school-related personal traits 

 
This study’s goal is to develop a technique to estimate the 

individual differences of children by observing their social 
signals in a classroom to ameliorate future social robots in 
schools (Fig. 1). 

II. RELATED WORK 

A. Techniques for Observing Individuals’ Behaviors in 
Group Settings  

Advances in robotics and ubiquitous computing have greatly 
improved observation techniques for individual behaviors. 
Even though such devices as RFID tags and smartphones can 
track the behaviors of the people carrying them, demanding 
that children always have them is problematic and unrealistic. 
Without asking them to carry a device, we can still identify 
individuals from their faces [10]. Nonetheless, one limitation 
of face-based identification is that it can only identify people 
whose frontal face is observed by a camera. Thus, only with it, 
people’s behaviors are not well perceived. Instead, researchers 
have explored various techniques to combine tracking 
technique with person identification (e.g., [11-13]). 

Our study includes an approach that integrates person 
identification with tracking. Unlike previous studies, we use 
depth camera for tracking, which yielded better tracking 
performance than tracking methods with RGB cameras [14]. 
We expect that our system will provide more robust results 
when tracking children’s behavior in a crowded classroom. 

B. Estimating Characteristics in Group Setting  

Various techniques have been developed for understanding 
individuals from their behavior, typically with wearable 
devices. For instance, Choudhury et al. developed a wearable 
device called a sociometer that records contact between device 
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carriers, which provide useful information for analyzing 
people’s face-to-face interaction on social networks [15]. 
Similarly, children’s friendships were estimated with 
proximity information observed with RFID tags [16]. Olguín 
et al. developed a technique to recognize such daily activities 
as talking with others and being at particular locations using a 
wearable sensor and found that such personality traits as 
extraversion and openness correlate with the perceived 
activities [17]. Kalimeri et al. applied support vector machine 
(SVM) classification to data obtained from wearable sensors 
and classified personality with 50-70% accuracy (better than a 
chance ratio of 33%) [18]. Mohammadi et al. analyzed the 
prosody of people’s speech and developed 2-class classifiers 
for personality with 60-72% accuracy (better than a chance 
ratio of 50%) [19]. These studies revealed the possibility of 
estimating individual’s personal traits from behavior data, 
although techniques still need enhancement, especially for 
better accuracy and other personal traits beyond personality. 

In contrast to these previous studies, our study introduces 
information acquisition from a sensor network without 
wearable devices on a population of children in a classroom 
context for identifying personal traits: self-efficacy. 

C. Children’s Personal Traits in Classroom 

Numerous studies on school-related personal traits have 
concentrated on pupils in psychology and education research. 
Among them, we focused on self-efficacy and performance-
goal, each of which represents critical aspects of children’s 
activity in the classroom: learning and social life. 

Self-efficacy: self-efficacy is defined as the “[belief] in 
one’s capabilities to organize and execute the courses of action 
required to manage prospective situations” [20]. In a classroom, 
it represents whether a student believes she can manage her 
own learning. Children with high self-efficacy tend to learn and 
have more success, generally in a self-regulatory manner. For 
instance, children with high self-efficacy tend to seek help 
when needed, but children with low self-efficacy tend to avoid 
that step [21]. 

We believe that awareness of the self-efficacy of each child 
is beneficial for a social robot in a classroom. If it could identify 
each child’s self-efficacy, it would be able to adjust its 
proactivity when offering help, e.g., offering more proactive 
assistance to children suffering from low self-efficacy. 

Performance goal: performance goal is the motivation of a 
student for learning, but it is quite different from self-efficacy. 
It refers to whether the student’s learning goal is to get better 
scores than the other students and more attention from teachers 
[22]. For students with a high performance goal, competing 
with other students is the primary concern. Students with high 
performance goals tend to study hard and achieve better exam 
performance [23]. 

We consider that knowing performance goals in addition to 
self-efficacy will be beneficial. We assume that if a robot could 
recognize them the robot could change its learning support 
behavior to stimulate competition for children with high 
performance goals. 

 

III. SYSTEM DESIGN 

Figure 2 illustrates the architecture of our developed system, 
which was originally developed [24] to estimate social status 
for children; in this study we used it to estimate different 
characteristics. Our observation system estimates children's 
positions by integrating both a people tracking system and a 
face identification system. When the faces of the children are 
identified, their IDs are associated to the tracked entity in the 
tracking system. The estimation system predicts the children's 
personal traits based on the extracted features from their 
positions by the observation system. 

A. People Tracking 

We employed a previously proposed people tracking 
algorithm using depth sensors [14], where depth cameras were 
attached to the ceiling and their positions and heights were 
estimated based on head- and shoulder-shape detection. With 
our setting, the tracking system monitors the position of all the 
people in the area at 30 Hz with an accuracy of approx. 30 cm. 
This system has robustness toward illumination changes and 
clothing colors because it uses depth information, which is 
useful for a classroom that has sunshine from windows. Since 
the depth-camera views from the top down, it is robust for 
crowded situations. 

We arranged the locations of the depth sensors to efficiently 
cover the space. The sensor (Kinect, field of view (FOV) is 57° 
horizontally and 43° vertically) covers approx. a 4 m * 3 m 
space when attached to the ceiling at 2750 mm. With 24 depth 
sensors, 8 by 16 m of the room was covered. Fig. 3 shows a 
depth image from a sensor and the tracking result in the 
classroom, where four to five children are sitting around their 
desks. The system tracked them well in such crowded 
situations. 

 
Fig. 2 System overview 

 
Fig. 3 Sensor arrangement 
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B. Person Identification 

For person identification, we employed a face identification 
approach using RGB cameras and a commercial face 
recognition software package (Omron, OKAO Vision [10]).  

We designed the camera configurations for adequate balance 
between the number of cameras and the chance of face 
identification. Since OKAO Vision requires that faces be 
observed in the frontal direction within 20 degrees (pitch) and 
35 degrees (yaw), we need many cameras to increase the 
chance of observing the frontal faces. However, the school 
insisted that cameras not obstruct class activities. For instance, 
the cameras should not distract the children during class (e.g., 
no cameras on desks facing the students) or obstruct them from 
seeing the teacher or the blackboard. They should also be put 
higher than an adult’s height to avoid collisions. Here we 
assume that children will at some point look toward the front 
of the classroom, where the teacher usually stands, and so for 
each desk, we put only one camera that should capture all of 
the children at or near that desk. That is, we set six RGB 
cameras (Logicool, C920t, FOV is 70.5° horizontally and 43.6° 
vertically). The details of the performances of person 
identification were previously reported [24]. 

C. Features for Estimating Personal Traits 

Time spent alone: We measured the ratio of the time that 
children spent alone. For each child 𝑖  and each time 𝑡 , we 
computed whether other children were within a threshold 
(𝐷 ) of this child. If someone is present in the threshold, the 
child is judged as not being alone at this time: 
𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑎𝑙𝑜𝑛𝑒 𝑖   ∑ 𝑖𝑠𝐴𝑙𝑜𝑛𝑒 𝑖, 𝑡 ∙ 𝛥𝑡      (1), 

𝑖𝑠𝐴𝑙𝑜𝑛𝑒 i, t  
 1  𝑖𝑓 𝑑𝑖𝑠𝑡 𝑝𝑜𝑠 𝑖, 𝑡 , 𝑝𝑜𝑠 𝑗, 𝑡 𝐷  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑗 𝑖
 0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              

      (2), 

where 𝑂𝑏𝑠𝑇𝑖𝑚𝑒 𝑖  is a function that returns the total tracking 
time of child 𝑖 , 𝛥𝑡  is the time step (33.3 msec) for this 
calculation, 𝑝𝑜𝑠 𝑖, 𝑡  is the x-y position of child 𝑖, and 𝑑𝑖𝑠𝑡 is 
the Euclidean distance between two x-y vectors. We used 
multiple thresholds for 𝐷  : 500 mm for the intimate distance 
and 1200 mm as the collaboratively working distance. 

Moving distance: We measured the average moving 
distance of the children per second: 
𝑀𝑜𝑣𝑖𝑛𝑔 𝑑𝑖𝑠𝑡 𝑖  

∑  𝑑𝑖𝑠𝑡  𝑝𝑜𝑠 𝑖, 𝑡 , 𝑝𝑜𝑠 𝑖, 𝑡 Δs                   (3), 

where we set 𝛥𝑠 as 500 msec to decrease the effects of tracking 
noise. 

Moving distance outside their own desk areas: In the class 
activities, children were split into groups and assigned to desks. 
While children often worked within the area of their desks, 
sometimes they moved around the classroom. We measured the 
average travel distance during these situations. Here a child is 
judged as being outside of his/her own desk area if the distance 
from the desk exceeds a range threshold (𝑅 ). The following 
is the computation for feature  
𝑀𝑜𝑣𝑖𝑛𝑔𝑑𝑖𝑠𝑡𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑖  

∑ 𝑖𝑠𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑖, 𝑡 ∙ 𝑑𝑖𝑠𝑡 𝑝𝑜𝑠 𝑖, 𝑡 , 𝑝𝑜𝑠 𝑖, 𝑡 ∆𝑠          (4),  

𝑖𝑠𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑖, 𝑡 1  𝑖𝑓 𝑑𝑖𝑠𝑡 𝑝𝑜𝑠 𝑖, 𝑡 , 𝑑𝑒𝑠𝑘 𝑖 𝑅
 0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (5), 

where 𝑑𝑒𝑠𝑘 𝑖  is the rectangle area of child 𝑖’s assigned desk 
and 𝑑𝑖𝑠𝑡  is the shortest Manhattan distance between the 
position and the rectangle area on the x-y plane (y is the 
classroom’s long side). We set 𝑅  to 300 mm for situations 
where children change their own positions around the desk and 
600 mm for situations where they go to other desks. 

Sitting time: We measured the ratio of the time when 
children were sitting based on the observed height of their 
heads. If a child’s head location is below height thresholds 
(𝐻 ), he/she is judged to be sitting: 
𝑆𝑖𝑡𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖  ∑ 𝑖𝑠𝑆𝑖𝑡𝑡𝑖𝑛𝑔 𝑖, 𝑡 ∙ Δt               (6), 

𝑖𝑠𝑆𝑖𝑡𝑡𝑖𝑛𝑔 𝑖, 𝑡  1     𝑖𝑓 𝐻𝑒𝑎𝑑𝐻𝑒𝑖𝑔ℎ𝑡 𝑖, 𝑡 𝐻
 0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (7), 

where 𝐻𝑒𝑎𝑑𝐻𝑒𝑖𝑔ℎ𝑡 𝑖, 𝑡  is the measured height of child 𝑖. We 
used two 𝐻 : 1050 mm for sitting and 1200 mm for half-
sitting situations (like working at the desk).  

Number of surrounding people: We measured the average 
number of surrounding people. For each child and each 
moment, we computed the number of other people within a 
distance threshold (𝐷 ) from him/her: 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑝𝑒𝑜𝑝𝑙𝑒 𝑖  

 ∑ ∑ 𝑖𝑓 𝑑𝑖𝑠𝑡 𝑝𝑜𝑠 𝑖, 𝑡 , 𝑝𝑜𝑠 𝑗, 𝑡 𝐷∀ .    (8) 

Time spent around the robot: We measured the ratio of the 
time that the children spent around the robot. For each child 
and each moment, we computed whether the child was within 
a distance threshold (𝐷 ) from the robot: 
𝑆𝑝𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑎𝑟𝑜𝑢𝑛𝑑 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑖  

 ∑ 𝑖𝑓 𝑑𝑖𝑠𝑡 𝑝𝑜𝑠 𝑖, 𝑡 , 𝑝𝑜𝑠 𝑟𝑜𝑏𝑜𝑡, 𝑡 𝐷 ∙ 𝛥𝑡  .         (9) 

 

D. Classification System 

In this study, in addition to the two personal traits (self-
efficacy and performance goal), we estimated exam scores and 
classified them as high or low. The low class includes children 
whose scores are below average. We applied support vector 
machine (SVM) for classifications and used different 
combinations of the above features to construct each SVM 
classifier for all of the personal traits and exam scores. Below 
we explain which features we used. 

 

IV. DATA COLLECTION 

A. Participants  

Our 84 participants were three classes of 5th graders (14 
females and 14 males in each class) whose average height was 
147.2 cm (S.D. was 9.4). The experimental protocol was 
approved by our IRB and school administrators. All the 
children and parents signed consent forms and agreed to be 
video-recorded. 

B. Environment  

We conducted data collection in an elementary school’s 
science room about twice a week per class. Four to five 
children sat around each desk (six desks from the front are 
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used) during 45-minute lessons that are followed by a five to 
twenty minute break. 

C. Robot’s Task 

In this data collection, we installed a robot in the room to 
increase the children’s understanding of their science lessons. 
The robot interacted with children by quiz-style conversations 
whose contents were prepared from lesson materials. With the 
quizzes, children can review their recent lessons. For this study, 
the robot was semi-autonomously controlled and was only 
available during breaks before/after classes. Further details 
about the robot are available [25, 26]. 

D. Procedure 

Each class had four lectures during the study. The room 
remained open before and after the science lessons. Among the 
four lectures, breaks during the two lectures were with the 
robot. The class was usually divided into two parts: lecture and 
group-work. During the lecture, the teacher usually spoke at the 
front, and the students were sitting and listening. During group-
work, the students formed groups based on their seats and 
conducted an experiment or used various science instruments, 
for instance, changing a pendulum’s weight and initial angle to 
study its characteristics. 

E. Questionnaires and Exam 

We gathered questionnaires before the study. Below are the 
scales that were used as the estimation targets.  

Self-efficacy: Among many scales for self-efficacy, we 
adopted one specifically prepared for children of similar ages 
[27] that consists of three items, such as, “No matter how much 
effort I make, I cannot learn science (reversed item),” rated on 
a 1-to-5 point scale. Cronbach’s α  was 0.71, indicating 
acceptable internal consistency. 

Performance-goal: We adopted a scale specifically 
prepared for children of similar ages [27] that consists of two 
items, such as, “I participate in science class to outperform 
other students,” rated on a 1-to-5 point scale. Cronbach’s alpha 
was 0.67, indicating that the internal consistency remained 
acceptable. 

Exam score: We gave exams during the study period that 
covered all three topics they studied. We averaged the scores, 
which ranged between 0 and 10. 

F. Obtained Dataset 

Behavioral data: The observed children’s behaviors are 
quite different across the three class phases: lecture, group-
work, and free-time. As previously discussed, we did not use 
any features of the lecture phase. 

During group-work, children generally stayed at their desks, 
where they engaged in activities related to science experiments. 
Some worked alone, and others worked together. Some 
children visited other desks to check the progress of the other 
groups or to ask about their problems. 

During free-time, children were often with their friends. 
Before the science class, many were talking with friends, and 
some were sitting at their own desks and waiting for class to 
start. After the science classes, some children gathered around 

the robot and interacted with it, and others briefly chatted with 
friends or returned to their homerooms. 

We separated the data based on the above phases and used 
both phases for estimation purposes. We collected 235 minutes 
of group-work data and 112 minutes of free-time data. 

Questionnaire data: Overall, we got 74 valid data samples. 
Some children were absent when the questionnaires were 
administrated, and others failed to completely fill them out 
even after being reminded a few times. As predicted in the 
literature, their exam scores are significantly correlated with 
self-efficacy (p=.007) and almost significantly correlated with 
performance goal (p=.089). We identified no significant 
correlations among the three personal traits. 

V. EVALUATION 

A. Performance 

We trained the classifiers using the obtained data and 
searched for the best features from all the combinations of 
features and parameters for SVM through a grid search. We 
used 5-fold cross-validations to evaluate their performance.  

Table 1 shows the obtained features and performances. 
Overall, our system achieved 73.0-74.7% accuracy. The bold 
fonts represent the highly contributory features. That is, 
removing them decreases the performance by more than 15% 
from this final result. 

The SVM classifier achieved 73.0% self-efficacy accuracy. 
As we expected, the key features are the number of surrounding 
people in the group work and the spent time around the robot. 
Associated with spent time around the robot and the number of 
surrounding people, children were not generally alone because 
they often interacted with the robot, and hence these features 
also contributed. The sitting time in group-work also 
contributed (correlation is 0.11). 

The SVM classifier achieved 73.3% performance goal 
accuracy. Children with a high performance goal have more 
time spent alone, as we expected. Unexpectedly, free-time 
features also contributed. For instance, these children have 
lower number of surrounding people values in free-time 
(correlation is -0.16), and more sitting time (0.13), possibly 
because they tended to stay in the room after class and work 
with their notebooks for a while. 

The SVM classifier achieved 74.7% exam score accuracy. 
Children with high exam scores seemed to seriously study 
during the classes. Sitting time highly contributed (correlation 
is 0.20), and the moving distance outside one’s own desk also 
contributed (-0.10). Thus, they did not move around much and 
sat for a longer time. 

B. Case Studies 

The estimation result provides insight about the relationship 
between children’s behavior and their personal traits. Here we 
further scrutinized some children’s behavior and retrieved 
scenes based on the contributing features for the classifiers. For 
self-efficacy, the number of surrounding people in both free-
time and group-work and the sitting time in group-work were 
major contributory features. Fig. 4 shows scenes where a child 
with high self-efficacy stays with friends around the robot. She 
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frequently interacted with it, often invited her friends to join 
her, and engaged with them by answering the robot’s class-
related quiz-style conversations. 

For the performance-goal, the number of surrounding people 
and the sitting time during free-time were major contributing 
features. Fig. 5 shows scenes where a high performance-goal 
child was still studying after class. Even when many children 
were talking near her and returning to their rooms, she 
continued to write down notes. 

For the exam scores, the sitting time during group-work was 
one major contributing feature. Fig. 6 shows scenes where two 
children with high (solid circles) and low (dotted circles) exam 
scores are studying during group-work. The high exam score 
child seriously worked on his experiment at his desk, but the 
low exam score child did not join the experiment and played 
with his friend. 

VI. DISCUSSIONS 

A. Implications 

This study shows promise for estimating children’s learning-
related personal traits and suggests that we can develop a robot 
that supports a child’s learning by adapting to individuals. For 
example, if a robot recognizes a child who has low self-efficacy, 
it should provide proactive help when the child seems to be 
rudderless. Otherwise, such a child is probably reluctant to get 
help. If a robot found a child with a high performance goal, it 
might elicit more competition, which would encourage that 
child to study even more. 

Further, in a classroom, a robot might be expected to find 
children who need learning support, e.g., children with low 
performance goal or low self-efficacy. In the future, a robot 
might be used to increase such children’s curiosity or interest 
in learning [25]. At the moment, it remains unknown how to 
effect such encouragement, and finding a way to make robot 
behaviors for such purposes is one future work enabled by this 
study. 

B. Privacy Concern 

Our system achieved identification, position tracking, and 
the estimating of personal traits of children in school, which is 
useful information if used appropriately. However, much 
discussion has focused on privacy concerns with positioning 
systems and our method admittedly increases privacy risks. It 
is important to analyze what we can know from such sensor 
data. Informed consent is essential from children, their parents, 
and teachers. They should clearly understand the potential 
ramifications of such studies. Our study certainly provides 
information for this. 

In future use, the system’s benefits to the detriment of 
privacy are important. For example, for future applications, 
social robots may be able to better serve children’s learning if 
they can identify children’s individual differences. We believe 
that social robots will offer such benefits. 

C. Generalizability and Limitations  

The study was conducted at a specific environment with 
many specific personal traits, such as culture, language, lecture 

style, and the robot’s role/behavior. For instance, although it 
was conducted solely in a science room, children might behave 
quite differently in their homerooms. If we use the system 
elsewhere or in other rooms, we need to adjust such aspects as 
camera arrangements, since the desk arrangements will be 
different. Nevertheless, we believe that our study framework is 
valid for many different settings, if we train SVM again for 
different settings.  

VII. CONCLUSIONS 

We developed a personal trait estimation system that 
consists of a people tracking system using depth sensors and a 
person identification system using RGB cameras. The system 
extracts features from children’s behaviors including social 
signals during classes and free-time and estimates their school-
related personal traits using SVM classifiers. We gathered 
children’s behaviors at a science room in an elementary school. 
Our system achieved 73.0-74.7% accuracy for estimations of 
two personal traits (self-efficacy and performance goal) and 
exam score. 

 
Table 1 Performance of SVM classifiers 

Personal  
traits 

Perfor-
mance

Features 
Group-work  Free-time  

Self-efficacy 73.0%

- Sitting time  
- Number of  
  surrounding people 
- Time spent alone 

- Time spent alone 
- Sitting time  
- Number of  
  surrounding people 
- Spent time around  
   the robot  

Performance 
goal 

73.3% - Time spent alone 

- Sitting time 
- Number of  
  surrounding people  
- Moving distance  
  outside own desk 

Exam score 74.7%

- Sitting time  
- Moving distance 
- Moving distance  
  outside own desk  

- Moving distance  
  outside own desk 

 

 
Fig. 4 Child with high self-efficacy 

 

 
Fig. 5 Child with high performance goal 

 

 
Fig. 6 Children with high/low exam scores 
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