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Abstract—In this paper we make a case for automatic com-
position assistance centered around the creative intention of the
user. After discussing how this focus on the user can influence
algorithm design choices, we present a composition assistant
system that follows such principles. The system allows a user
to freely define any part of a four-part chorale to be composed,
be it harmony or partial melodies for up to four voices. The
algorithm interpolates the user input and yields a complete four-
part voicing including the underlying harmony progression. The
interpolation is based on n-gram statistics, to which smoothing is
applied in order to enable the algorithm to handle a wide range
of user inputs even if they do not appear in the training data.
The system computes the solution by maximizing probability with
respect to the statistics using Dijkstra’s algorithm and dynamic
search space expansion. The experimental results show that the
composition assistant produces valid results, quite successfully
adhering to rules derived from music theory.

I. INTRODUCTION

The automatic generation of musical content has been a
topic of research since the automatic composition of the Illiac
suite[1] in the 1950s. Research on artificial intelligence has
since come a long way, and a variety of methods have been
applied to the problem of music composition, including rule-
based systems, grammatical models, evolutionary algorithms
and neural networks. For an overview over research on artifi-
cial intelligence in the field of music generation, we refer to
the survey of Fernández and Vico[2].

Many of the published approaches to automatic music
generation aim at enabling a computer to autonomously
compose its own music, oftentimes imitating a certain style
or genre. Some of these systems yield musically interesting
results, examples being David Cope’s Experiments in Music
Intelligence[3] or the Melomics music database[4]. However,
since these systems essentially replace a human composer, they
have often been met with skepticism, all the while human
composers are still regarded as superior to artificial ones.

On the other hand, automatic composition systems that
include a significant amount of user interaction have received
considerable public attention. One example is a system called
FlowComposer[5], which interactively assists its user in lead
sheet creation and has been used by the artist Skygge to
compose a quite successful album[6]. Another example is
a system called Orpheus[7], which provides a web-based
service to turn a Japanese text into a song, and has been
used by several thousand website visitors. In our research, we
specifically focus on user interaction and in this paper present
an algorithm for automatic music composition assistance.

This paper is structured as follows. In section II, we present
the structure of our algorithm that assists a user in composing
four-part chorales, and discuss how our focus on user interac-
tion has influenced design choices. The following sections III
and IV detail the algorithm. It is divided into the two steps
of inferring the underlying harmony progression of a section
to be composed, and then generating a four-part voicing of
said progression. The results of the algorithm are discussed in
section V and the paper is concluded in section VI, ending in
a discussion how user centered composition assistance can be
developed further.

II. COMPOSITION ASSISTANCE

A. Autonomous Composition vs. Assistance

Autonomous composition and composition assistance share
common aspects such as mathematical models that allow
computers to understand or learn various aspects of music.
Nevertheless, the focus and problems to be solved can be
quite different. Autonomous composition aims at replacing
a human composer, with the ultimate goal of passing a
musical Turing test of sorts. As such, algorithms of this type
have to, for example, imitate a certain style of music. Most
importantly, however, they have to somehow capture human
creativity in order to create results that do not sound too boring
or mechanical. On the other hand, composition assistance
can rely on the human user to provide and judge musical
ideas to a certain extent. However, in comparison with an
autonomous composer, an artificial assistant is subject to far
more constraints, which represent the intention of the user.

B. Completion of Partial Four-Part Chorales

In this paper, we present a composition assistance algorithm
that was designed with focus on its user. It assists in compos-
ing four-part chorales, which is a major discipline of classical
music. These chorales are pieces for four voices with different
vocal ranges, often sung by choirs, but also performed with
instruments, e.g. by string quartets. One of a chorale’s main
features is that voices are composed to be distinct from each
other and interesting on their own, while their interplay is
also important. This property has lead to a lot of music theory
related to chorales, making it a popular composition problem
to be solved by students or computers.

Systems to harmonize given melodies[8], [9], [10] as well
as systems tackling the inverse problem of conditional melody
generation[7], [11], [12] have been published, but for our
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Fig. 1. An exemplary result of chord and voicing interpolation in C major. The algorithm is constrained by both partial voicing and harmony shown in red.
While user constraints can be set per beat, the algorithm treats harmonies as objects with length. For example, it regards the first harmony as a tonic chord
spanning four beats, which is allowed because it satisfies all constraints during its duration (harmony of the first beat and notes of third and fourth beat).

composition assistant we aim even further and allow the user
to more freely insert his musical ideas, be it harmonies or
notes of any voice (displayed red in Fig. 1). For example, the
user might only come up with a part of a melody, a motif
which might move through different voices, an interesting
baseline or partial chord progression, or any combination of
these ideas, and then use the composition assistant to fill
in the rest of the piece. When completing the chorale, the
algorithm splits the generative process into the interpolation of
harmony and voicing (turning abstract harmonies into concrete
notes). This two step approach is based on the idea that
harmony progressions are important on their own, and similar
problem separation has been used for autonomous composition
in previous research[9]. Furthermore, this separation allows
to use two different and independent data sets for harmony
and voicing, drastically increasing the amount of usable data
and the system’s flexibility (e.g. one could use jazz harmonies
with classical voicing). The concept of chorale completion is
illustrated in Fig. 1 with an exemplary result. The algorithm
was designed considering how a user can best identify himself
with a creation that is in part result of artificial intelligence,
which is discussed in the following.

C. User Centered: Unique Solutions

For capturing musical concepts with computers, the most
popular and flexible approaches involve probabilistic models.
When dealing with probabilities, there are two main principles
that can be applied to generate content.

1) Maximizing the probability, corresponding to assuming
the existence of rules and principles in the data, and
aiming at fulfilling these to the highest possible degree.

2) Drawing random samples from the probability distribu-
tion, corresponding to generating imitations with statis-
tical properties as similar as possible to the training data.

A recent example of successful application of the second prin-
ciple is the automatic composition system called DeepBach[8],
which was also developed for the classical problem of chorale
composition. However, it differs from our system in that its
focus is the imitation of the composer Bach to the extent
that generated chorales are indistinguishable from real ones.
While DeepBach is also able to harmonize melodies inserted

by the user, methods involving random sampling have a
drawback with respect to composition assistance, which is
their inherent randomness. This means, for example, that the
system generates different results for the same melody input
depending on random number generator seeds. Therefore, luck
is involved and the user’s direct influence decreases. In a
sense, when regenerating the same piece with different seeds,
the human is assisting the computer by choosing its best
creations, shifting the focus from user to computer. Therefore,
we think that the randomness of the generation process should
be minimized if possible.

On the contrary, the method of probability maximization
associates every set of inputs with a unique solution. This
means that a user cannot simply retry automatic generation
with the same conditions, but has to intentionally change
something to achieve different results. For example, he could
add constraints to change the harmony flow or add notes
to shape melody or bass line where it does not yet suit
his taste. This in turn means that the result is shaped by
the user’s intention, not involving luck, possibly increasing
sense of accomplishment and identification with the creation.
The automatic composition system Orpheus[7] follows this
approach, where users often spend a considerable amount of
time tuning parameters of their songs. Often voiced feedback
is that they enjoy being able to compose their own music
without requiring the extensive knowledge of professionals,
indicating that the users are able to view the generated songs
as a creation of their own.

However, probability maximization can have the drawback,
that with too few constraints the results may sound boring,
because of being too common. Therefore, user input plays
an important role for the output, be it melodic elements or
interesting harmonies. While not yet implemented, the user
could further be allowed to manually tune parameters like
harmonic tension, intentionally moving probability mass from
common to more uncommon patterns, which is discussed in
the outlook in section VI-C.

D. Implicit vs. Explicit Information
Implicit modeling of musical aspects can increase versatility

of the mathematical model, if enough data is available. For
example, the system DeepBach[8] makes use of a neural
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Fig. 2. Three exemplary harmonies in the key of C major (key quality in
round brackets). The subscript denotes onset, length in beats. As for the
rightmost symbol, the algorithm treats consecutive different voicings of the
same harmony as continuation of the respective harmony. Key quality and
rhythm information are in this paper often omitted for readability.

network to implicitly learn harmonic relationships, allowing it
to automatically account for nonharmonic tones. This means
that data with harmony annotation is not required, but in turn
information about the harmony is not provided by the system.

On the contrary, we chose to explicitly model the underlying
harmony progressions of music pieces, because it provides the
user with more ways to intuitively influence the composition
of their piece.

III. HARMONY INTERPOLATION

A. Harmony Constraints

To interpolate the underlying harmony of a piece, the
algorithm computes the harmony sequence with the highest
probability with respect to statistics obtained from a music
corpus. The user can influence the harmony progression gen-
eration with the following two types of constraints.

1) Harmony candidates can be manually specified for each
beat. Harmony progressions are only valid if they con-
tain one of those candidates at the respective beat.

2) Additional constraints are inferred from the partial voic-
ing, i.e. notes that were input by the user. A harmony is
only allowed if it contains all notes that occur on beats
during its duration.

It is possible that these constraints exclude all harmonies at a
beat, in which case the user is informed of the infeasibility of
the interpolation problem.

Mathematically, one can formulate the problem of finding
the optimal harmony sequence H = h1, . . . , hn ≡ hn1 as
follows.

Hopt = argmax
H

P (H) = argmax
H

n∏
i=1

P (hi|hi−11 )

∀hi : hi ∈ Constraints at position of hi

(1)

The shorthand notation hba, denoting a sequence from index a
to index b, is used throughout this section.

B. Harmony Definition

For the quality of the interpolation it is important how the
harmony symbols hi are defined. The presented algorithm

accounts for both harmonic functionality and rhythm by using
symbols hi that encode the following information (see Fig. 2).
• Functional Degree: The interval between the root notes

of key and harmony, denoted in roman numerals from I
to VII, using [ accidentals for minor intervals.

• Chord Quality: For the presented results, we included
major, minor, diminished, augmented, dominant seventh,
major seventh and minor seventh chord qualities.

• Key Quality: This information is, for example, required to
discern between V:maj harmonies in major and harmonic
minor keys, which are expected to be followed by differ-
ent harmonies (major and minor tonics, respectively).

• Harmony Length: Given in beats and together with the
onset information allows the algorithm to produce mean-
ingful harmony rhythms.

• Harmony Onset: A value from 1 to 4, which specifies on
which beat in a bar the harmony begins.

C. Probability Computation

3-gram statistics are used to approximate the probabilities
of the optimization problem in (1).

P (hi|hi−11 ) ≈ P (hi|hi−1i−2) (2)

The n-gram method, originally developed for language pro-
cessing, has been applied successfully for music analysis in
previous research[13], which is often attributed to grammar-
like properties observed in music. In a naive n-gram model, the
3-gram probability in (2) would correspond to the number of
occurrences of the sequence hii−2 in the training data divided
by the total number of sequences of the same length.

However, due to the user being able to freely constrain the
harmony, the occurrence of 3-grams hii−2 that were not seen
in the music corpus is quite probable, and the algorithm has to
be able to handle both unseen candidates hi as well as unseen
contexts hi−1i−2.

The problem of unseen candidates hi is handled using
Kneser-Ney smoothing. The idea of this smoothing method
is to use a discount value D to subtract probability mass from
higher order n-grams and distribute it to lower order n-grams
as follows.

PKN (hi|hi−1i−n+1) =
c(hii−n+1)−D∑

hi
c(hii−n+1)

+γ Ps(hi|hi−1i−n+2)) (3)

where the function c(hba) counts the number of occurrences
of the n-gram hba in the training data, and γ is a factor that
is computed such that the total probability sums to 1. The
smoothing probability Ps is not a classical n-gram probability,
but instead depends on the number of contexts in which the
reduced n-gram appears in the training data.

Ps(hi|hi−1i−n+1) =
C(·hii−n+1)−D∑

hi
C(·hii−n+1)

+ γ Ps(hi|hi−1i−n+2)

C(·hii−n+1) = |{h′|c(h′, hi−n+1, . . . , hi) > 0}|

(4)

The recursion terminates at 1-grams Ps(hi), where D and γ
are set to zero. The discount value D is usually computed
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depending on how much data is available for a given context
according to the Good-Turing estimate.

D =
n1

n1 + 2n2
(5)

where n1 and n2 are the number of symbols which occur in the
training data exactly one or two times, respectively. However,
in case of music, the number of different symbols is much
smaller than their average count, resulting in very small and
unstable values of n1 and n2, possibly even zero. Therefore,
we set D = 1/3, corresponding to the approximation n1 ≈ n2.
For more detailed analysis on Kneser-Ney smoothing we refer
to the experimental evaluation of Chen and Goodman[14].

Finally, the described smoothing method cannot account for
unseen contexts, because in that case division by zero occurs in
(3). Therefore, in case a context hi−1i−n+1 ≡ hc does not appear
in the training data, the algorithm falls back to a reduced
context h−c .

P (hi|hc) =

{
PKN(hi|hc) if

∑
hi
c(hii−n+1) > 0

PKN(hi|h−c ) otherwise
(6)

The simplest fallback method would be to set h−c = hi−1i−n+2,
i.e. removing the last symbol. However, we insert interme-
diate fallback levels where only the rhythm information of
the last symbol is removed. For example, if the context
(II:min73,2,VI:maj71,2) is unseen, the algorithm first falls back
to searching contexts with a VI:maj71,2 harmony preceded by
II:min7 harmonies of any length. Only if this context is also
unseen, it is reduced to the single VI:maj1,2 harmony.

D. Probability Maximization

One can view a harmony progression as a path through a
directed graph with harmony nodes. Each edge in the graph
is associated with a multiplicative weight that corresponds to
the n-gram probability of its end node given the preceding
nodes. The total probability of a path can be obtained by
multiplying all weights of its edges. Since these probabilities
are all positive, one can use Dijkstra’s algorithm to compute
the path with the highest probability. The graph is dynamically
expanded using a Fibonacci heap [15]. User input is accounted
for by terminating paths at nodes that violate constraints.

IV. VOICING INTERPOLATION

A. Problem Definition

The harmony progression obtained in the previous step
is turned into actual notes by choosing chord voicings, i.e.
selecting pitches for tones contained in the harmonies and as-
signing them to different voices. In case of four-part chorales,
a harmony voicing vi = {nSi , nAi , nTi , nBi } comprises notes
of the four voices soprano(S), alto(A), tenor(T) and bass(B).
Internally, the notes are processed as MIDI note numbers
(integers corresponding to pitch), entailing that enharmonic
spelling is ignored. Similar to the harmony interpolation, the

problem is formulated as constrained probability maximization
of a voicing sequence V = v1, . . . , vn ≡ vn1 .

Vopt = argmax
V

P (V ) = argmax
V

n∏
i=1

P (vi|vi−11 )

∀vi : ∀ni ∈ vi : ni ∈ Harmony and Partial Voicing

(7)

The constraints are the underlying harmony progression, i.e.
notes have to be contained in the harmony at their position,
and the existing partial voicing, meaning all notes that the user
has manually inserted (shown as red notes in Fig. 1).

B. Probability Computation

Analogously to the harmony interpolation, n-gram statistics
are used to compute voicing probabilities, in order to benefit
from the smoothing method described in section III-C. This
allows the algorithm to handle user input that does not occur
in the training data. However, since the number of possible
voicings is much larger than the number of possible harmonies,
the context size is reduced to voicing 2-grams P (vi|vi−1).
To further increase flexibility, the voicings vi are not directly
used as symbols in the computation, but instead their prob-
abilities are factorized into n-gram probabilities of the notes
nSi , n

A
i , n

T
i , n

B
i that make up a voicing.

P (vi) = P (nSi , n
A
i , n

T
i , n

B
i )

= P (nSi )P (n
A
i |nSi )P (nTi |nAi , nSi )P (nBi |nTi , nAi , nSi ) (8)

This means that note 4-grams already occur for voicing 1-
grams. In order to account for transitions between voicings
(i.e. 2-grams), note 8-grams would be required, which entails
sparsity problems considering the relatively small size of
music data sets.

For the following, we introduce the a notation for intervals
between two notes.

IA→S
i ≡ nSi − nAi ISi−1→i ≡ nSi − nSi−1 (9)

Since the absolute pitch values of two notes encode the exact
same information as the pitch value of one of the notes in
combination with the interval size between the two notes, the
following equation holds.

P (vi, vi−1) = P (vi, I
v
i−1→i) (10)

where Ivi−1→i = {ISi−1→i, I
A
i−1→i, I

T
i−1→i, I

B
i−1→i} are the

intervals between the consecutive notes of each of the four
voices in the two voicings. For the right hand side of (10)
we assume the following approximate statistical independence,
which allows to express the voicing 2-gram probability as a
product of 1-gram probabilities.

P (vi, I
v
i−1→i) ≈

1

A
P (vi)P (I

v
i−1→i) (11)

where A is a normalization factor. This approximation reduces
n-gram sparsity drastically and still allows the model to
account for several important aspects of polyphonic voicing.
From a composer’s perspective, this corresponds to separately
considering a voicings internal structure and the transition
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between voicings. The structure probability P (vi) enables the
algorithm to reproduce the following relationships between
voices.

• The occurrence of chord inversions (i.e. which note
appears in the bass voice) and the duplication of voices
in triad harmonies.

• The psychoacoustic consonance of a voicing, which is
difficult to express as tangible rules, but its significance
becomes quickly apparent when listening to the two
voicings of the rightmost harmony shown in Fig. 2.

• The balance between inter-voice distances, i.e. the inter-
vals between neighbouring voices.

Likewise, the transition probability P (Ivi−1→i) can express the
following aspects of voicings.

• The balance between step sizes of all four voices from
the previous note to the next.

• The balance between parallel, oblique and contrary mo-
tions of the four voices.

While resolving the sparsity problem, the assumed indepen-
dence between the two probabilities makes the algorithm un-
able to identify the rather complex constellations like parallel
octaves and fifths, which would require larger contexts. These
parallels occur when two voices move by the same interval
(information in P (Ivi−1→i)) while the interval between them
is a fifth or octave (information in P (vi)). However, the
avoidance of such parallels can be formulated as a tangible
rule for very specific constellations. Therefore, we think that
the best trade-off between n-gram sparsity and the adherence
to music theory can be achieved by treating parallel octaves
and fifths with special rules discussed in section IV-C.

One final approximation is used, which transforms P (vi)
into a probability that is not dependent on absolute, but only
on relative pitch. In order to do this, all notes except for that
of the soprano voice are re-encoded as intervals with respect
to the next higher voice. In this formulation, the interval
probabilities are assumed to be independent from the absolute
pitch probability P (nSi ), which is then removed in order to
retain only relative pitch information.

P (vi) = P (nSi , I
A→S
i , IT→A

i , IB→T
i )

≈ P (IA→S
i , IT→A

i , IB→T
i )

(12)

Rather than an approximation, this corresponds to ignoring
absolute pitch information, the motivation being that this
information would actually hinder the algorithm in follow-
ing the user’s intention. While relative pitch information is
important for generating good harmony voicings, absolute
pitch information would induce a tendency towards the center
of the respective voice ranges. Especially in case of the
relatively short frames of a few bars, this tendency could
appear unnatural if the user inserts many notes at the borders
of voice ranges. Therefore, we think that it is more meaningful
to use voice range information only for restricting the search
space (see section IV-D).

C. Special Rules

A probabilistic approach to automatic voicing is very suited
for capturing relations that are difficult to formulate as tangible
rules, or balancing different aspects such as voice movement
direction and distance. However, some relations might be
easier to capture with another method. The avoidance of
parallel octaves and fifths is a good example of such a relation
(two voices moving in consecutive octaves or fifths). Their
identification requires a relatively large context, which in case
of the presented algorithm would conflict with the sparsity
reducing approximation in (11). However, this relation can be
formulated as a tangible rule, which requires no balancing
against other rules, because such parallels are completely
prohibited. Therefore, it can be implemented using a penalty
factor αp to suppress the occurrence of parallel motion. Like-
wise, hidden parallel motion, which occurs when two voices
move into an octave or fifth interval while moving into the
same direction, is suppressed using a different penalty factor
αhp, which should be larger than αp. The modified probability
is computed as follows.

P (vi|vi−1)∗ = α
Np(vi−1,vi)
p α

Nhp(vi−1,vi)
hp P (vi|vi−1) (13)

where Np(vi−1, vi) and Nhp(vi−1, vi) denote the number of
parallel and hidden parallel motions occurring between vi and
vi−1. The penalty factors αp and αhp can be set to 0 in order
to completely suppress rule violation, or set to a small number
greater than zero in order to allow the user to break the rule
without obtaining zero probability solutions.

D. Probability Maximization

The probability maximization method is similar to that of
the first step, and utilizes Dijkstra’s algorithm to find the
optimal voicing sequence. The voicing graph is expanded dy-
namically and user input accounted for by only allowing paths
which contain all notes the user has inserted. Additionally, due
to the large amount of possible combinations of four notes, the
search space is further restricted by not considering voicings
with at least one of the following properties.

• Voice crossings, i.e. a note in a lower voice being higher
than that of a higher voice, which is usually avoided.

• Intervals between neighbouring voices that are larger than
any interval between those voices observed in the data.

• Incomplete harmonies, i.e. voicings that do not contain
all pitch classes contained in the harmony at the given
beat. This implies that only one pitch class is duplicated
in triad harmonies and none in seventh chords.

While the algorithm will not consider such voicings in the
automatic generation of new voicing candidates, the user is
still allowed to ignore these constraints. This means that the
algorithm can for example handle incomplete harmonies if the
user manually inserted them, and while such harmonies might
not occur in the data, the probability is non-zero thanks to the
application of n-gram smoothing.
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Fig. 3. Two examples of interpolation solutions to constraints that are shown in red. The constraints are inserted by the user and represent his creative intention.

V. EXPERIMENTAL RESULTS

A. Training Data

For the harmony interpolation algorithm, training data has
to contain information about both harmonic rhythm and func-
tionality (i.e. information about the key to relate harmonies
to). A data set that fulfils both requirements is the KSN
annotation data set[16]. After removing sections with uneven
signatures (e.g. 3/4), the training data contains about 9100 bars
of harmony progressions. To reduce the number of possible
n-grams, the chord qualities were restricted to major, minor,
diminished, augmented, as well as dominant, major and minor
sevenths. More complex qualities were changed to their closest
simpler type, e.g. dominant ninths to dominant sevenths.

The training data for voicing interpolation was obtained
from the Classical Archives website[17] in the form of MIDI
tracks. We chose Johann Sebastion Bach’s chorales as training
material, which are famous for their four-part voicing. After
excluding chorales with more or less than four voices, 380
pieces remain, with a total of about 27000 beats. The voices
are read by the program in quarter note resolution, i.e. shorter
note ornaments are ignored.

B. Subjective Evaluation

The quality of music is difficult to evaluate objectively
due to differences in taste. While in the case of classical
chorales, we can evaluate results according to criteria derived
from music theory, which is discussed in the next section,
we first describe overall subjective impressions that cannot be
expressed quantitatively.

Examples of the algorithms output can be seen in Fig. 1,
in which the constraints were intentionally set by the user,
and in Fig. 8, in which constraints were randomly generated
(see section V-C). The melodic rhythms of these examples
was generated by automatically connecting repeating notes
within a bar, which the voicing algorithm only outputs as
quarter notes. To generate harmonically interesting results, the
algorithm requires a few constraints in the form of harmonies
or partial voicing. Without constraints, the results consist of
very common chord progressions like I→ IV→ V→ I, which
are musically valid, but can become monotone. However, this
problem can be avoided using constraints like partial melodies
or uncommon harmonies.

When computed on a single core of a i7-4720HQ CPU,
the interpolation of moderately constrained (20% voice notes,
80% empty) pieces that span 4 bars takes on average less
than a second. Interpolation of pieces with very many or
very few constraints is generally faster. When increasing the
length of the interpolation problem to be solved, the required
time increases exponentially due to the exponential search
space growth. Pieces with 8 bars required on average more
than 3 seconds. However, rather than computation time, the
inability to generate musical long-range dependencies might
limit the meaningful length of interpolation problems: While
the generated harmony progressions might be valid, they
would, for example, miss repetitive harmonic patterns or
motifs, unless manually inserted by the user as constraints.
Therefore, there is no real added benefit from interpolating a
very long piece, compared to splitting it into smaller pieces
to be interpolated. To induce repetition computationally, one
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Fig. 5. Ratio of similar (same direction) and contrary motion between voices
in Bach’s chorales and experimental results. Music theory encourages the use
of contrary motion. Since parallel motion is a type of similar motion, the
suppression of parallels shifts the balance of motion types.

could possibly expand the model with a context-free grammar
for long-range dependencies.

A weakness of the algorithm in its current form is its
inability to recognize nonharmonic tones. These are notes that
do not belong to the current chord in the underlying harmony
progression and are used to embellish the basic voicing. While
it would be relatively easy to add such embellishing tones to
an automatically generated voicing, the real problem lies in the
fact that the algorithm interprets all notes input by the user as
harmony constraints. Since the automatic decision whether to
treat a note as harmonic tone or embellishment is non-trivial
and not yet included in the model, complex note constellations
can lead to unnecessary complicated harmony progressions
(see Fig. 8) or even unsolvable interpolation problems.

C. Music Theory

Although objective evaluation of music is difficult, in the
case of chorales, there are several music theoretical principles
a composer should generally follow. While there is no absolute
correct in music, and composers sometimes ignore these
principles, most rules are very concrete and forbid the usage of
specific note constellations. Therefore, we can quantitatively
evaluate by counting how often a principle is not followed, and
compare the numbers obtained from automatically generated
pieces and from pieces composed by Johann Sebastian Bach,
who is regarded as a master of chorale composition.

For the experiment, the data set containing 390 chorales
was randomly split into 90% training data, from which n-
gram statistics were obtained, and 10% test data. From the
chorales in the test data set, 100 excerpts spanning 4 bars
were randomly extracted. From these excerpts 80% of the
contained notes were randomly removed, and the remaining
20% were used as constraints for the interpolation (shown red
in Fig. 8). The musical keys of the excerpts were automatically
determined by choosing such that the amount of notes not
contained in the keys’ scales is minimized. Nonetheless, in 10
excerpts the nonharmonic tones were so many that the inter-
polation algorithm could not find a solution. The experiment
was conducted for three different sets of values for the penalty
factors αh and αhp, which suppress parallel and hidden parallel
motion, respectively.
• Free (no suppression): αh = αhp = 1, i.e. parallel motion

is not explicitly suppressed.
• Relaxed Rules: αh = 0.002, αhp = 0.02, i.e. parallel

motion is suppressed, but allowed when avoiding it is
impossible or leads to extremely unlikely results.

• Strict Rules: αh = αhp = 0, i.e. parallel motion is
completely suppressed. In this case, an additional 6
excerpts of the experiment became unsolvable.

While the algorithm computes in quarter note resolution, the
chorales of Bach where analyzed in high enough resolution to
process every note, e.g. short passing tones which can be used
to avoid parallel motion.

The following music theoretical principles were accounted
for in the evaluation.

1) Parallel Motion (Fig. 4): Parallel octaves and fifths, i.e.
two voices moving from one of said intervals into the same,
and hidden parallel octaves and fifths, i.e. two voices moving
in the same direction and ending up in one of said intervals,
are to be avoided in polyphonic voicing, although the rule for
hidden parallels is less strict.

The experimental results confirm the effectiveness of the
penalty factors. In case of the strict rule set, 6 additional
interpolation problems became unsolvable, because the inter-
polated chord progressions do not allow a voicing sequence
that contains all input notes but no parallel motion. If a
problem is solvable, parallel motion is completely suppressed.
One could improve the outcome by avoiding parallel motion
using nonharmonic tones, or by detecting unavoidable parallels
already in the harmony interpolation.
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intervals are classified as unmelodic (see sqection V-C). One can clearly see the effect of Bach’s frequent use of passing tones (often steps between harmonies
including nonharmonic tones), which facilitate the composition of smooth melodies and are not yet accounted for in the interpolation algorithm.

2) Relative Motion Direction (Fig. 5): There are three types
of relative motions between two voices: Moving into the same
direction (similar motion), moving into opposite directions
(contrary motion) and only one voice moving while the other
one does not (oblique motion). According to music theory,
contrary motion is desirable and should occur often.

Interestingly, the evaluation results of the free rule set
deviate the most from the properties of Bach’s chorales in
term of balance between similar and contrary motion. Since
parallel motion is a type of similar motion, its suppression
shifts the balance towards contrary motion.

3) Inter-Voice Distance (Fig. 6): According to music the-
ory, neighboring voices should stay within a certain distance
of each other. As a general rule, they should not be farther
apart than a 10th interval. However, this is more important for
higher voices, which are encouraged to stay within an octave
of each other, whereas the bass usually has more freedom to
move away from the neighboring tenor voice.

As can be seen in Fig. 6, the probability maximization ap-
proach of the interpolation algorithm tends to keep voices even
stricter within these interval boundaries than Bach. Relaxation
of the rules allows the algorithm to keep the intervals more
often within the boundaries.

4) Smooth Voice-Leading (Fig. 7): In order to obtain
smooth melodies, music theory recommends the use of small
melody intervals. Furthermore, the following intervals are
considered melodic and others should be avoided: Minor
and major second, minor and major third, perfect fourth,
perfect fifth, ascending minor sixth and perfect octave. For the
evaluation result, unison intervals were ignored, since they can
also occur in rhythmic function unrelated to voicing.

As can be seen in Fig. 7, the algorithm performs worse than
Bach in this respect. Since it does not consider nonharmonic
tones, the generation of smooth melodies can be difficult.

5) Final Remarks: The evaluation results indicate that the
algorithm is able to quite successfully adhere to music theo-
retic principles. However, this does not automatically guaran-
tee that the generated results are musically pleasing or inter-
esting. An intuitive example of a musical property not directly
covered by music theory is the concept of psychoacoustic
consonance. While humans intuitively perceive consonance,
it is difficult to measure explicitly. In our model, it is mainly
influenced by the voicing structure probability P (Vi) in (11).
Since the algorithm does not consider non-harmonic tones,
dissonance is no major problem, but subjective evaluation
cannot be completely replaced by music theoretic evaluation.
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VI. CONCLUSIONS

A. Summary

We made a case for composition assistance that focuses
on reacting to the intention of the algorithm’s user, based
on the motivation to retain the user’s sense of accomplish-
ment despite using artificial intelligence. In line with derived
design principles, an algorithm was presented that assists a
user in composing four-part chorales by first inferring its
harmony progression and then computing a suitable voicing.
The experimental results show that the algorithm generates
valid results when evaluated according to music theoretical
criteria. However, since the algorithm does not account for
nonharmonic tones, the generation of smooth voice leading is
difficult depending on the input constraints.

B. Possible Improvements

Due to the limited context of n-grams, the presented algo-
rithm is not able to recreate long-range harmonic dependencies
(e.g. repetitive harmony patterns) found in many types of
music. A model for such dependencies, could serve as ad-
ditional constraint for the interpolation. In case of the voicing
interpolation, the context of the voicing n-grams is too small to
reliably generate melodic rhythm. This could be addressed by
developing a rhythm model to refine the interpolated voicing.

Most importantly, a model of nonharmonic tones would
significantly improve the quality of the chorale interpolation.
During harmony interpolation, information about how likely a
input note is an nonharmonic tone of a certain harmony, could
be used to inversely compute how probable the respective
harmony is, allowing to more freely handle partial voicing.
On the other hand, the same probabilities could be used
to embellish the generated voicing with nonharmonic tones,
which would significantly facilitate the generation of smooth
melodies. One could develop such a model either heuristically
based on music theory, or in the ideal case, statistically using
data containing both voicing and harmony annotation.

Generally, one could either increase the complexity of the
probability model to reproduce more sophisticated proper-
ties of the training data, or improve the performance of
the algorithm for even faster user interaction. The former
could be achieved using a neural network to train probability
dependencies given larger contexts, while the latter could be
achieved by parallelizing integral parts of the algorithm.

C. Increasing Meaningful User Interaction

The consequent continuation of the research discussed in
this paper is to provide the user with more ways to meaning-
fully influence the music generation process. The drawback
of maximizing the harmony progression probability, i.e. the
risk of obtaining valid but boring results, could be countered
by providing a parameters to tune harmonic tension and/or
harmonic complexity throughout the piece to be created.
These parameters could shift probability mass from frequent
harmonies to more unexpected ones. In the case of voicing,
one could think about parameters to tune ornamentation com-
plexity, psychoacoustic consonance or melodic properties.

Such parameters should be abstract enough to allow intuitive
use even by inexperienced users. For example, a parameter
to directly influence inter-voice distance might be easy to
implement, but especially inexperienced users would not likely
know how to meaningfully use them, defeating the parameters’
purpose of helping realize the user’s intention. On the other
hand, the parameters should not be too abstract, like for
instance emotions, whose complicated connection to music is
not yet sufficiently understood. An algorithm that allows to
set parameters with meaningful level of abstraction for every
beat or bar in the piece would provide a user with powerful
tools to create his very own music.
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