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Abstract—In this paper, visual saliency is used to guide the
coding tree unit (CTU) level bit allocation process in high
efficiency video coding (HEVC) to improve the visual quality.
At first, a saliency detection algorithm is proposed. With the
detected saliency map, the distortion of each CTU is weighted
by the corresponding saliency, so that the distortion of the salient
areas is more critical. Then, the optimal bit allocation problem
constraint by the picture level target bits and minimum quality
fluctuation is built. Numerical method is used to solve the bit
allocation problem. Experiment results show that quality gaining
in salient areas is up to 0.8658 dB, the gaining of saliency
weighted PSNR is up to 1.0318 dB.

I. INTRODUCTION

A rate control scheme usually resolves two main problems.

The first is how to allocate proper bits to each coding block

according to the buffer status or bit budget, and the second is

how to adjust the encoder parameters to properly encode each

block with the allocated bits [1]. For the first problem, proper

bits mean that the allocated bits should not only meet the

constraint, but also reach the optimization goal. In [2], inter-

frame dependency was considered to reflect the correlation

among consecutive frames, and then efficient frame-level bits

allocation algorithm was proposed. Li et al. [3] attempted to

solve the coding tree unit (CTU) level optimal bit allocation

problem, they developed an optimization formulation with

rate distortion (R-D) estimation, and obtained a closed form

solution by recursive Taylor expansion method. Li et al. [4]

considered both inter-frame dependence and CTU level R-

D performance. Many R-D models have been proposed to

calculate λ and QP, e.g., Quadratic model [5], ρ-domain model

[6] and λ-domain model [7].

All of the above rate control algorithms aimed at minimizing

the average objective distortion, while human visual system

(HVS) was not considered. For HVS based video coding,

region of interest (ROI) coding is the hot topic. Some algo-

rithms have been proposed to improve the quality in ROIs.

Zeng et al. [8] developed perceptual sensitivity to guide bit

allocation. Zhang et al. [9] built RD models for ROIs and non-

ROIs respectively. Bai et al. [10] used the average saliency

and mean absolute difference as weights, and allocated bits

for each CTU according to these two weights. However, bit

allocation for ROIs and non-ROIs in these algorithms is not

optimal in RDO sense, as the bits difference between ROIs

and non-ROIs is manually determined.

In this paper, we propose a saliency based CTU level

rate control algorithm for Inter coded frames in HEVC. Our

algorithm mainly focuses on the first problem, i.e., proper bit

allocation. In the proposed rate control algorithm, saliency

is used as the weight to measure the distortion in different

regions, so that the overall distortion is penalized by the

distortion in salient areas (SA), i.e., ROI. At first, a saliency

detection algorithm is proposed to detect the saliency. Then,

the optimal CTU level bit allocation problem is built constraint

by frame level target bits and minimum weighted distortion.

The problem is solved by the numerical method. Finally, the

bits re-allocation and the RDO parameters clipping algorithms

are designed to make up the mismatch between the allocated

bits and the actually consumed bits.

The paper is organized as follows. The proposed saliency

detection algorithm and saliency weighted distortion are pre-

sented in Section II. Section III introduces the proposed rate

control algorithm. Section IV presents experimental results and

Section V concludes the paper.

II. THE PROPOSED SALIENCY DETECTION ALGORITHM

The proposed saliency detection algorithm is mainly com-

posed of 3 parts: static saliency detection, dynamic saliency

detection and fusion. In the proposed algorithm, information

in compressed HEVC domain, besides information in pixel

domain, is utilized to generate dynamic feature map to reduce

complexity.

A. Static Saliency Detection

To detect static saliency, static features are extracted at

first. In the proposed algorithm, four static feature maps are

extracted: one luminance feature map, two chroma feature

maps and one texture feature map. Luminance and chroma

feature maps are the down-sampling of Y, Cb and Cr color

component, represented by SFL, SFCb and SFCr respec-

tively. The down-sampling process can be expressed as,































SFL
k =

64
∑

i=1

Yk,i/64

SFCb
k =

16
∑

i=1

Cbk,i/16

SFCr
k =

16
∑

i=1

Crk,i/16

(1)

where Yk,i (Cbk,i, Crk,i) is the i-th element in the k-th 8×8

(4×4) block of Y (Cb, Cr) color component. It should be noted

that the video format in our experiment is 4:2:0 YCbCr, then
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the extracted luminance feature map and chroma feature maps

are of the same size.

Texture feature can be represented by spatial frequency.

DCT is a powerful tool to transform images from pixel domain

into spatial frequency domain. Therefore, we use 8×8 DCT to

extract texture features from Y component. Our texture feature

map, represented by SFT , is a set of vectors, each of which

is composed of 5 lowest frequency DCT AC coefficients, as

following,

SFT
k =

{

AC
(0,1)
k , AC

(1,0)
k , AC

(2,0)
k , AC

(1,1)
k , AC

(0,2)
k

}

(2)

where AC
(i,j)
k is the coefficient with coordinate (i, j) in the

k-th DCT block.

Each static feature map can generate a saliency map by

calculating the saliency of each static feature. The saliency of

one static feature is measured by the distance from itself to

the surroundings, as the following,

SMF
k =

∑

i∈W (k)

G (i, k) · ‖Fi − Fk‖2 (3)

where Fi is the i-th feature in the static feature map F , F ∈
{

SFL, SFCb, SFCr, SFT
}

, W (k) is k-centric 9×9 square

window, and G (·) is Gaussian kernel function. Finally, the

static saliency map can be obtained by the following equation,

SM = 0.4·SML+0.15·SMCb+0.15·SMCr+0.3·SMT (4)

B. Dynamic Saliency Detection

Dynamic feature indicates the movement in frame. It is

time-consuming to exhaustively search the movement of the

entire frame. To reduce the complexity, motion vector (MV)

generated by the HEVC encoder is used instead. The MV of

each 8×8 block composes the dynamic feature map, repre-

sented by DF . However, for dynamic background videos, the

movement of background may cause comparable MV to that

of foreground, which can introduce spurious SA. Therefore,

the feature of dynamic background should be filtered out.

Different from the complex and varied motion of foreground,

the motion of background tends to be regular, which results in

the relatively simple coding structure and smaller residual. In

this paper, the mask containing coding structure and residual

information is designed to filtered out the motion of dynamic

background, as following,

maskk =

{

0, if dk · rk < Th
1, if dk · rk > Th

(5)

where dk is the splitting depth in CTU of the k-th 8×8 block,

and rk is the average residual of the k-th 8×8 block. The

threshold Th is defined as,

Th = 2 ·

∑

dk · rk
n

(6)

where, n is number of pixels in a frame. Then, the dynamic

saliency map can be obtained by normalizing and masking the

dynamic feature map,

DMk =
‖DFk‖2

max
k

‖DFk‖2
·maskk (7)

C. Adaptive Fusion

With the static and dynamic saliency map, the final saliency

map can be obtained by fusion. In the proposed algorithm, the

linear fusion scheme is used, as following,

FMk = a1 · SMk + a2 ·DMk + a3 ·MMk (8)

where a1, a2 and a3 are weighting factors, MM is the mixed

saliency map, MMk = SMk · DMk. The weighting factors

are defined as,


















a1 = 1

a2 =
(

σSM

σDM

)
1
2

a3 = 2 ·
(

σSM

σFM · σDM

σFM

)
1
2

(9)

where σ is standard deviation of corresponding saliency map.

After fusion, normalization is carried out, and the final saliency

map is obtained.

III. THE PROPOSED RATE CONTROL ALGORITHM

A. Saliency Weighted Distortion

The traditional picture quality metrics, i.e., PSNR and MSE,

have been widely criticized for not correlating well with

perceived quality measurements [11]. The studies over the

past few years have shown that the addition of video saliency

maps improves the performance of most quality metrics [12].

Therefore, the visual saliency is used to weight the distortion,

similar as [13], to be compliant well with the perceived quality.

The saliency weighted distortion in this paper is defined as,

ds = (0.01 + s) d = wd (10)

where d is MSE of the CTU, s is the maximum visual saliency

within the CTU and w = 0.01 + s is the weighting factor.

As shown in (10), the weighting factor w is proportional to

visual saliency s. For SA, the relative large weighting factor

penalizes the objective distortion d, which is in accordance

with the wide acknowledge that visual distortions appearing

in salient regions might be more visible and, therefore, more

annoying [14].

B. CTU Level Initial Bit Allocation

In [15], a linear distortion model, i.e., λ-D model, is pro-

posed, where distortion is described by the Lagrange multiplier

λ, as the following,

dcurr =
dprev

λprev
· λcurr (11)

where dcurr is MSE of the current picture, dprev is MSE of

the previous picture, λcurr is the Lagrange multiplier of the

current picture and λprev is the Lagrange multiplier of the

previous picture. Another rate estimation model widely used

in HEVC is λ-R model [7] which can be expressed as,

λ = α · bppβ (12)

where α and β are context related model parameters, and bpp
is the abbreviation of bit per pixel.
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In this paper, we use the above λ-D model and λ-R model

to facilitate the proposed algorithm. However, the linear λ-

D model is derived under the condition that the quality of

consecutive frames in the video is consistent. To be compatible

with hierarchy coding structure, the linear distortion model is

modified before used, as the following,

di = pi · λi (13)

where di is MSE of the i-th CTU in current frame, pi is the

ratio of MSE to the Lagrange multiplier of the i-th CTU in

the previous same hierarchy frame, and λi is the Lagrange

multiplier of the i-th CTU in current frame.

Combining (10) and (13), the weighted distortion for the

i-th CTU in current frame is,

dsi = wipiλi (14)

Our goal is that the total distortion in the whole frame is

minimized by proper bit allocation, i.e.,

dspic = argmin
ds
i

N
∑

i=1

nid
s
i

= argmin
bppi

N
∑

i=1

niwipiαibpp
βi

i

(15)

where dspic is the picture level weighted distortion, ni is the

number of pixels in the i-th CTU, N is the number of CTUs

in a frame, bppi is the bpp of the i-th CTU, and αi and βi

are λ-R model parameters in CTU level. Besides, the total

allocated bits for CTUs in the frame should also satisfy the

target bitrate constraint that,

N
∑

i=1

nibppi ≤ Rpic (16)

where Rpic is the target bits allocated to the current frame by

the frame level rate control mechanism. Equations (15) and

(16) constitute the constrained optimization problem, which

can be elegantly solved by Lagrange multiplier method [16].

The Lagrange function of the constrained problem is,

L (bppi, u) =
N
∑

i=1

niwipiαibppi
βi + u

(

N
∑

i=1

nibppi −Rpic

)

(17)

where u is the Lagrange multiplier. The Karush-Kuhn-Tucker

(KKT) condition of equation (17) is,







∂L
∂bppi

= niwipiαiβibppi
βi−1 + u · ni = 0 (i)

∂L
∂u

=
N
∑

i=1

nibppi −Rpic = 0 (ii)
(18)

From condition (i), the optimal bits allocated to the i-th CTU

by the proposed algorithm can be obtained,

riniti = ni · bppi = ni

(

−
u

wipiαiβi

)
1

βi−1

(19)

Taking bppi in condition (i) into condition (ii), the single-

variable equation related with u can be obtained, as following,

N
∑

i=1

ni

(

−
u

wipiαiβi

)
1

βi−1

= Rpic (20)

The above equation can also be viewed as the root of function

f which is,

f (u) =
N
∑

i=1

ni

(

− u
wipiαiβi

)
1

βi−1

−Rpic

=
N
∑

i=1

coeffi · u
1

βi−1 −Rpic

(21)

where,

coeffi = ni · (−wipiαiβi)
1

1−βi (22)

Comparing (20) and (21), u in (20) is also the root of f , vice

versa. In this paper, we use the Newton iterative method [17]

to solve the root of f . The iterative scheme here is,

un+1 = un −
f (un)

f ′ (un)
(23)

where un is the n-th iteration value. It can be proved that the

iteration in (23) necessarily converges with any positive initial

value u0.

With the root solved by the above numerical method, the

optimal bits for the i-th CTU can be obtained by plugging it

into (19).

C. CTU Level Rate Control

With the initially allocated bits above, the Lagrange multi-

plier for RDO can be calculated by λ-R model [7]. For each

CTU, QP is calculated according to the λ-QP model [18].

Then, the CTU is encoded with the calculated λ and QP.

Ideally, the actually consumed bits to encode the CTU exactly

equal the allocated one. However, there nearly almost exists

mismatch between the initially allocated bits and the actually

consumed bits for the inaccuracy of λ-R model [7]. To make

up this mismatch, bits error generated by the previous CTUs

is assigned to all the following uncoded CTUs by weight. The

re-allocated bits by the proposed method is,

rrei = riniti +

∑i−1
j=1

(

rinitj − ractj

)

∑N
k=i r

init
k

riniti (24)

where rrei is the re-allocated bits for the i-th CTU, rrei is the

initially allocated bits in Section III-B and ractj is the actually

consumed bits for encoding the j-th CTU.

With the re-allocated bits rrei , the RDO parameters λact
i and

QP act
i for the i-th CTU can then be calculated [7], [18],

{

λact
i = αi

(

rrei
ni

)βi

QP act
i = ⌊4.2005 · lnλact

i + 13.7122+ 0.5⌋
(25)

where ⌊·⌋ is the floor operation. But due to the inaccuracy

of RD model, the bits error may accumulate gradually so

that there is inadequate or excess remaining bits for the latter
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CTUs. To reduce bits error accumulation, λact
i and QP act

i are

clipped around the picture level parameters,

{

λact
i = clip

(

λpic · 2
−

dQL(i)
3 , λpic · 2

dQU(i)
3 , λact

i

)

QP act
i = clip (QPpic − dQL(i), QPpic + dQU(i), QP act

i )
(26)

where λpic is the picture level Lagrange parameter, QPpic is

the corresponding picture level QP, and dQL (i) and dQU (i)
are saliency related functions. For salient CTUs, dQL = 8,

dQU = 2, for non-salient CTUs, dQL = 2, dQU = 8. Then,

λact
i and QP act

i are used to encode the i-th CTU.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm,

we implement it into HM [19]. Four bitrates, corresponding

to four constant QP encoded bitrates, i.e., QP=22, QP=27,

QP=32 and QP=37, are tested. In the following, QP is used

to represent the corresponding bitrate for simplicity. In the

experiments, data for saliency detection are from two public

databases [20], [21], and sequences for rate control are HEVC

common test sequences [22].

A. Performance Analysis of Saliency Detection

To evaluate the performance of the proposed saliency de-

tection algorithm, area under the curve (AUC) is tested. The

comparison results of AUC are listed in Table I, where LD is

lowdelay configuration and RA is randomaccess configuration.

It can be seen from Table I that about half AUCs by the

proposed algorithm (LD, QP=22) are bigger than those by the

other four algorithms. The average AUCs by the four classical

algorithms are 0.1404, 0.0605, 0.1167 and 0.0792 smaller than

the one by the proposed algorithm (LD, QP=22). Therefore,

the proposed saliency detection algorithm is better than the

other four classic algorithms in sense of AUC. The perfor-

mances under different bitrates and encoder configurations are

tested, as shown in Table I. The results show that the biggest

AUC difference under four conditions is only 0.0389, therefore

the performance of the proposed saliency detection algorithm

remains stable for different bitrates and configurations in sense

of AUC.

B. Bits Allocation Analysis

The bits ratio allocated to salient areas (SA) at bitrate

QP=22 and QP=37 is counted, as shown in Table II. In

our experiment, the top 30% CTUs in saliency descending

order are regarded as salient, otherwise non-salient. It can be

seen from Table II that bits allocated to SA by the proposed

algorithm are more than those by HM for all sequences. The

bits allocated to SA by the proposed algorithm are 24% more

for LD and 30% more for RA at bitrate QP=22; and 27%

more for LD and 18% more for RA at bitrate QP=37. As

more bits are allocated, the quality in SA can be enhanced by

the proposed algorithm.

C. Quality in SA and NSA

Quality in SA and non-salient areas (NSA) by HM, Bai

[10] and the proposed algorithm are tested. The results of

KristenAndSara are shown in Fig. 1 (a)-(c). From Fig. 1 (a),

PSNR in SA by HM is much less than PSNR in NSA, which

is improper as distortion in SA is more sensitive. Bais’ [10]

method increased the quality in SA, but still needs to be further

improved, as shown in Fig. 1 (b). In the proposed algorithm,

bits are allocated based on saliency, and the quality in SA is

effectively increased, as shown in Fig. 1 (c). The more detail

results at bitrate QP=22 are shown in Table III, where PSNR-

S is PSNR for SA, PSNR-NS is PSNR for NSA. From Table

III, the quality in SA by HM is about 1.2269 dB worse than

that in NSA. Bais’ method improves the quality in SA, but

still 0.5887 dB worse than that in NSA. The quality in SA by

the proposed algorithm is similar as or even better than that

in NSA for every sequence.

D. Quality Comparison

The bitrate quality (RQ) curves by HM, Bai [10] and the

proposed algorithm are presented in Fig. 1 (d). It can be

seen from Fig. 1 (d) that RQ curve by HM is the best one

when PSNR is used as criterion. As PSNR does not correlate

well with perceptual quality, we use saliency weighted PSNR

(wPSNR) to re-evaluate the quality [27]. The RQ curves of

the three methods when wPSNR is used as quality criterion

are presented in Fig. 1 (e). As bits are optimally allocated

according to saliency, the RD performance by the proposed

algorithm is better than the other two algorithms.

The more detail wPSNR comparison is presented in Table

IV. From Table IV, the wPSNR gaining by Bai and the

proposed algorithm is 0.1894 dB and 0.5093 dB at bitrate

QP=22, and 0.3785 dB and 0.4633 dB at bitrate QP=32.

Therefore, the proposed algorithm is effective at different

bitrate and outperforms HM and Bais’ method in sense of

wPSNR.

To further evaluate the performance of the proposed rate

control algorithm, BD-BR and BD-wPSNR [28] are tested,

as shown in Table V. For LD configuration, BD-BR decreas-

ing and BD-wPSNR gaining by the proposed algorithm are

12.61% and 0.4999 dB on average, about 6.32% and 0.2487

dB more than those by Bai [10].

E. Complexity and Bitrate Error Analysis

The bitrate error (BRE) by HM and the encoding time of the

proposed algorithm vs. HM are tested, as shown in Table VI

where CRC is encoding time ratio excluding saliency detection

and CRCS is encoding time ratio including saliency detection.

From Table VI, the BRE is 2.70% and 3.55% for HM and

the proposed algorithm under LD, and 1.75% and 2.57% for

HM and the proposed algorithm under RA. Therefore, the

rate control accuracy by the proposed algorithm is slightly

worse than that by HM under both LD and RA. The reason is

that more bits are allocated in SA by the proposed algorithm,

which causes bigger bits error accumulation with the same RD

model error. The encoding complexity by the proposed rate
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TABLE I
AUC PERFORMANCE COMPARISON

Sequences Zhang [23] Itti [24] Seo [25] Hou [26]
LD RA

QP=22 QP=32 QP=22 QP=32

HallMonit 0.7071 0.7999 0.8393 0.7912 0.8434 0.8512 0.8723 0.8503

FOREMAN 0.5285 0.6905 0.5696 0.6543 0.7863 0.7654 0.7735 0.7471

HARBOUR 0.5236 0.5773 0.4273 0.4832 0.6403 0.6014 0.6278 0.6107

MOBILE 0.3339 0.4088 0.4287 0.4382 0.7003 0.7109 0.6987 0.7054

BQSquare 0.4693 0.5291 0.4935 0.5423 0.6076 0.6280 0.5867 0.6079

BasketballPass 0.6452 0.7905 0.6748 0.7252 0.7550 0.7520 0.7264 0.7187

Johnny 0.7532 0.8813 0.7915 0.8594 0.8868 0.8847 0.8744 0.8716

FourPeople 0.7350 0.6758 0.7323 0.8095 0.8206 0.8102 0.8211 0.8122

SlideEditing 0.5954 0.8559 0.6491 0.6956 0.8012 0.8182 0.8104 0.8280

SlideShow 0.7880 0.7892 0.7296 0.7284 0.7899 0.7803 0.7753 0.7988

KristenAndSara 0.8193 0.8163 0.8370 0.8643 0.9026 0.8947 0.9072 0.8939

Cactus 0.7158 0.7584 0.7256 0.7566 0.7655 0.7483 0.7746 0.7553

Average 0.6345 0.7144 0.6582 0.6957 0.7749 0.7704 0.7707 0.7667

(a) (b)

(c) (d)

(e)

Fig. 1. RQ Curve Comparison of KristenAndSara by Three Methods (LD):
(a) RQ curve of SA and NSA by HM (b) RQ curve of SA and NSA by Bai
[10] (c) RQ curve of SA and NSA by proposed algorithm (d) RQ curve by
four methods (e) weighted RQ curve by four methods.

TABLE II
BITS RATIO OF SALIENT AREAS

Sequences
LD RA

HM Proposed HM Proposed

Q
P

=
2
2

FourPeople 56% 78% 51% 81%
Johnny 46% 81% 39% 82%

KristenAndSara 39% 75% 37% 77%
BQTerrace 39% 57% 38% 62%

Cactus 45% 66% 42% 69%
Kimono 41% 66% 40% 67%

ParkScene 40% 56% 41% 63%
Average 44% 68% 41% 71%

Q
P

=
3
7

FourPeople 40% 68% 34% 42%
Johnny 46% 69% 32% 39%

KristenAndSara 37% 69% 32% 40%
BQTerrace 31% 62% 30% 50%

Cactus 47% 70% 38% 69%
Kimono 42% 69% 40% 67%

ParkScene 41% 66% 37% 67%
Average 41% 68% 35% 53%

control algorithm is similar as HM. If take saliency detection

into consideration, the overall encoding complexity by the

proposed algorithm is about 1.03 times than HM under LD

and 1.05 times than HM under RA.

V. CONCLUSION

In this paper, a saliency based CTU level rate control

algorithm is proposed to enhance the quality of SA. Besides,

a saliency detection algorithm is also proposed. The pro-

posed saliency detection algorithm is superior to four classic

algorithms in sense of AUC. By the proposed rate control

algorithm, quality gaining in salient areas is up to 0.8658 dB,

the gaining of saliency weighted PSNR is up to 1.0318 dB.
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TABLE III
PSNR COMPARISON BETWEEN SALIENT AREAS AND NON-SALIENT AREAS (QP=22)

Sequences
HM Bai [10] Proposed

PSNR-S PSNR-NS PSNR-S PSNR-NS PSNR-S PSNR-NS
(dB) (dB) (dB) (dB) (dB) (dB)

LD

FourPeople 42.2858 43.9335 42.2210 43.7542 42.2837 42.6391
Johnny 41.7606 44.0353 41.8581 43.9266 42.2877 43.4869

KristenAndSara 43.3700 44.4779 43.6454 44.1125 43.9784 43.6793
BQTerrace 39.2224 40.2919 39.5715 39.5147 40.2805 39.2050

Cactus 38.6633 39.4146 38.9410 38.9516 39.1404 38.7931
Kimono 41.6842 42.1148 41.9683 41.5069 42.2903 41.0913

ParkScene 39.4625 40.3550 39.3121 39.5440 40.1629 39.4123
Average 40.9213 42.0890 41.0739 41.6158 41.4891 41.1867

RA

FourPeople 42.0497 43.7491 42.1187 43.5783 42.3294 43.1504
Johnny 42.1096 44.2080 42.2066 44.0756 42.4514 43.7781

KristenAndSara 43.3017 44.4014 43.3971 44.0855 43.6707 43.7969
BQTerrace 39.0137 40.1616 39.2646 39.5927 39.8795 39.2652

Cactus 38.4159 39.1981 38.6131 38.8174 38.7450 38.6104
Kimono 38.6327 39.7718 38.9334 38.7850 39.2742 38.2692

ParkScene 41.3236 41.9449 41.5022 41.2220 41.8601 40.8860
Average 40.6924 41.9193 40.8622 41.4509 41.1729 41.1080

TABLE IV
WPSNR COMPARISON (LD)

Sequences HM Bai [10] Proposed

Q
P

=
2
2

FourPeople 44.1391 44.1976 44.2930
Johnny 43.9566 44.2282 44.4749

KristenAndSara 45.3738 45.7281 45.9944
BQTerrace 41.0747 41.2051 41.5680

Cactus 40.4160 40.3824 40.9160
Kimono 43.5802 44.0751 44.2288

ParkScene 41.1140 41.1638 41.7447
Average 42.8078 42.9972 43.3171

Q
P

=
3
2

FourPeople 38.3535 38.5571 38.7213
Johnny 37.9287 37.8757 38.1162

KristenAndSara 39.3634 39.9360 39.8926
BQTerrace 35.0909 35.3397 35.4509

Cactus 35.5392 35.8850 35.9149
Kimono 37.7606 38.7474 38.7924

ParkScene 34.9995 35.1676 35.3902
Average 37.0051 37.3836 37.4684

TABLE V
BD-BR AND BD-WPSNR COMPARISON (LD)

Sequences
Bai [10] Proposed

BD-BR BD-wPSNR BD-BR BD-wPSNR
(%) (dB) (%) (dB)

FourPeople -4.42 0.2072 -8.06 0.3127

Johnny -0.99 0.0142 -10.47 0.4715

KristenAndSara -11.19 0.5322 -15.31 0.6592

BQTerrace -7.41 0.3023 -12.43 0.5219

Cactus -2.74 0.0211 -11.39 0.3112

Kimono -16.82 0.6800 -18.73 0.7898

ParkScene -0.44 0.0012 -11.85 0.4327

Average -6.29 0.2512 -12.61 0.4999
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