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Abstract— Despite a long-standing effort to characterize 
various aspects of the singing voice and their relations to speech, 
the lack of a suitable and publicly available dataset has 
precluded any systematic study on the quantitative difference 
between singing and speech at the phone level. We hereby 
present the NUS Sung and Spoken Lyrics Corpus (NUS-48E 
corpus) as the first step toward a large, phonetically annotated 
corpus for singing voice research. The corpus is a 169-min 
collection of audio recordings of the sung and spoken lyrics of 48 
(20 unique) English songs by 12 subjects and a complete set of 
transcriptions and duration annotations at the phone level for all 
recordings of sung lyrics, comprising 25,474 phone instances.  
Using the NUS-48E corpus, we conducted a preliminary, 
quantitative study on the comparison between singing voice and 
speech.  The study includes duration analyses of the sung and 
spoken lyrics, with a primary focus on the behavior of 
consonants, and experiments aiming to gauge how acoustic 
representations of spoken and sung phonemes differ, as well as 
how duration and pitch variations may affect the Mel Frequency 
Cepstral Coefficients (MFCC) features.  

I. INTRODUCTION 

In audio signal analysis, it is important to understand the 
characteristics of singing voice and their relation to speech.  A 
wide range of research problems, such as singing and speech 
discrimination and singing voice recognition, evaluation, and 
synthesis, stand to benefit from a more precise 
characterization of the singing voice.  Better solutions to these 
research problems could then lead to technological 
advancements in numerous application scenarios, from music 
information retrieval and music edutainment to language 
learning [1] and speech therapy [2]. 

Given the similarity between singing and speech, many 
researchers classify the former as a type of the latter and try to 
utilize the well-established automatic speech recognition 
(ASR) framework to handle the singing voice [3][4][5].  Due 
to the lack of phonetically annotated singing datasets, models 
have been trained on speech corpora and then adapted to the 
singing voice.  This approach, however, is intrinsically 
limited because the differences between singing and speech 
signals are not captured.  Thus, a quantitative comparison of 
singing voice and speech could potentially improve the 
capability and robustness of current ASR systems in handling 
singing voice.   

Despite long-standing efforts to characterize various 
aspects of singing voice and their relations to speech [7][8], 
the lack of a suitable dataset has precluded any systematic 
quantitative study.  Given that most existing models are 

statistics-based, an ideal dataset should not only have a large 
size but also exhibit sufficient diversity within the data. To 
explore the quantitative differences of singing and speech at 
the phone level, the research community needs a corpus of 
phonetically annotated recordings of sung and spoken lyrics 
by a diverse group of subjects. 

In this paper, we introduce the NUS Sung and Spoken 
Lyrics Corpus (NUS-48E corpus for short), 48 English songs 
the lyrics of which are sung and read out by 12 subjects 
representing a variety of voice types and accents. There are 20 
unique songs, each of which covered by at least one male and 
one female subject. The total length of audio recordings is 
115 min for the singing data and 54 min for the speech data. 
All singing recordings have been phonetically transcribed 
with duration boundaries, and the total number of annotated 
phones is 25,474. The corpus marks the first step toward a 
large, phonetically annotated dataset for singing voice 
research. 

Using the new corpus, we conducted a preliminary study on 
the quantitative comparison between sung and spoken lyrics.  
Unlike in speech, the durations of syllables and phonemes in 
singing are constrained by the music score. They have much 
larger variations and often undergo stretching.  While vowel 
stretching is largely dependent on the tempo, rhythm, and 
articulation specified in the score, consonant stretching is 
much less well understood.  We thus conducted duration 
analyses of the singing and speech data, primarily focusing on 
consonants.  We also hope to better understand how one can 
borrow from and improve upon the state-of-the-art speech 
processing techniques to handle singing data.  We thus carried 
out experiments to quantify how the acoustic representations 
of spoken and sung phonemes differ, as well as how 
variations in duration and pitch may affect the Mel Frequency 
Cepstral Coefficients (MFCC) features.  The results of both 
the duration and spectral analyses are hereby presented and 
discussed. 

The remainder of this paper is organized as follows. 
Section II provides an overview of existing datasets and 
related works on the differences between singing and speech.  
Section III describes the collection, annotation, and 
composition of the NUS-48E corpus.  Section IV and V 
present the results of the duration analyses and spectral 
comparisons, respectively.  Finally, Section VI and VII 
conclude this paper and suggest future work. 

II. RELATED WORK 



A. Singing Voice Dataset 
Singing datasets of various sizes and annotated contents are 

available for research purposes.  To the best of our knowledge, 
however, none has duration annotations at the phoneme level.  

Mesaros and Virtanen conducted automatic recognition of 
sung lyrics using 49 singing clips, 19 of which are from male 
singers and 30 from female singers [4].  Each clip is 20-30 
seconds long, and the complete dataset amounts to 
approximately 30 minutes.  Although a total of 4770 phoneme 
instances are present, the lyrics of each singing clip are 
manually transcribed only at the word level, without any 
duration boundaries.  

The MIR-1K dataset [6] is a larger dataset consisting of 
1000 clips from 110 unique Chinese songs as sung by 19 
amateur singers, 8 of whom female.  The total length of the 
singing clips is 133 minutes.  Since this dataset is intended for 
singing voice separation, annotations consist of pitch, lyrics, 
unvoiced frame types, and vocal/non-vocal segmentation, but 
do not contain segmentation on the word level or below. 

AIST Humming Database (AIST-HDB) [9] is a large 
database for singing and humming research.  The database 
contains a total of 125.9 hours of humming/singing/reading 
materials, recorded from 100 subjects. Each subject produced 
100 excerpts of 50 songs chosen from the RWC Music 
Database (RWC-MDB) [16].  While the lyrics of the songs 
are known, neither the AIST-HDB nor the RWC-MDB 
provides any phoneme or word boundary annotation. 

B. Differences of Singing and Speech 
Observations on differences of singing and speech have 

been reported and studied [7][8].  The three main differences 
lie in phoneme duration, pitch, and power.  Constrained by 
the music score and performance conventions, the singing 
voice stretches phonemes, stabilizes pitches, and roams within 
a wider pitch range.  The power changes with pitch in singing 
but not in speech. 

Ohishi et al. studied the human capability in discriminating 
singing and speaking voices [10].  They reported that human 
subjects could distinguish singing and speaking with 70.0% 
accuracy for 200-ms signals and 99.7% for one-second 
signals. The results suggest that both temporal characteristics 
and short-term spectral features contribute to perceptual 
judgment. The same research group also investigated short-
term MFCC features and long-term contour of the 
fundamental frequency (F0) in order to improve machine 
perform on singing-speaking discrimination [8].  F0 contour 
works better for signals longer than one second, while MFCC 
performs better on shorter signals.  The combination of the 
short-term and long-term features achieved more than 90% 
accuracy for two-second signals.  

Since singing and speech are similar from various aspects, 
finding the right set of features to discriminate the two is 
crucial.  A set of features derived from harmonic coefficient 
and its 4Hz modulation values are proposed in [11]. While in 
[12], a feature selection solution among 276 features is 
introduced. 

C. Conversion between Singing and Speech 
The conversion between speaking and singing has also 

attracted research interest.  A system for speech-to-singing 
synthesis is described in [13]. By modifying the F0, phoneme 
duration, and spectral characteristics, the system can 
synthesize a singing voice with naturalness almost 
comparable to a real singing voice using a speaking voice and 
the corresponding text as input.  A similar system is 
developed in [14] to convert spoken vowels into singing 
vowels.  On the other hand, the SpeakBySinging [15] system 
converts a singing voice into a speaking voice while retaining 
the timbre of the singing voice.  

III. THE NUS SUNG AND SPOKEN LYRICS CORPUS 

A. Audio Data Collection 
Song Selection. We selected twenty songs in English as the 

basis of our corpus (see Table I).  They include well-known 
traditional songs and popular songs that have been regional 
and international hits, as well as several songs that may be 
less familiar but are chosen for their phonemic richness and 
ease of learning.  In addition, lyrics of some songs, such as 
Jingle Bells and Twinkle Twinkle Little Star, are expanded to 
include verses other than the most familiar ones to further 
enhance the phonemic richness of the corpus, while overly 
repetitive lines or instances of scat singing, such as those 
found in Far Away from Home and Lemon Tree, are excised 
to better preserve phonemic balance.  The list of songs and 
their selected lyrics are posted on our study website1. 

Subject Profile. We recruited 21 subjects, 9 males and 12 
females, from the National University of Singapore (NUS) 
Choir and the amateur vocal community at NUS.  All subjects 
are enrolled students or staff of the university.  They are 21 to 
27 years of age and come with a wide range of musical 
exposure, from no formal musical training to more than 10 
years of vocal ensemble experience and vocal training.  All 
four major voice types (soprano, alto, tenor, and bass) are 
represented, as well as a spectrum of English accents, from 
North American to the various accents commonly found in 
Singapore.  Local accents tend to be less apparent in singing 
than in speaking, a phenomenon that becomes more marked 
as the subject’s vocal experience increases.  Subjects are all 
proficient speakers of English, if not native speakers.  

Collection Procedure. Subjects visited the study website 
to familiarize with the lyrics of all twenty songs before 
coming to our sound-proof recording studio (STC 50+) for 
data collection.  An Audio-Technica 4050 microphone with 
pop filter was used for the recording.  Audio data were 
collected at 16-bit and 44.1kHz using Pro Tools 9, which also 
generated a metronome with downbeat accent to set the tempi 
and to serve as a guide for singing.  The metronome was fed 
to the subject via the headphone.  The selected lyrics for all 
songs were printed and placed on a music stand by the 
                                                             
1 http://singingevaluation.wordpress.com/2012/11/22/songs-to-pick/ 



microphone for the subject’s reference.  Except metronome 
beats heard through the headphone, no other accompaniment 
was provided, and subjects were recorded a cappella. 

For each song, the selected lyrics were sung first.  While 
the tempo was set, the subject could choose a comfortable key 
and were free to make small alterations to rhythm and pitch.  
Then, the subject’s reading of the lyrics was recorded on a 
separate track.  When a track with all the lyrics clearly sung 
or spoken was obtained, the subject proceeded to the next 
song.  A few pronunciation errors were allowed as long as the 
utterance remained clear.  Except the occasional rustles of the 
lyric printouts, miscellaneous noise was avoided or excised 
from the recording as much as possible. 

For each subject, an average of 65 minutes of audio data 
was thus collected in 20 singing (~45min) and 20 reading 
tracks (~20min).  Each track was then bounced from Pro 
Tools as a wav file for subsequent storage, annotation, and 
audio analyses.  At the end of the recording session, we 
reimbursed each subject with a S$50 gift voucher for the 
university co-op store. 

B. Data Annotation 
We adopted the 39-phoneme set used by the CMU 

Dictionary (see Table II) for phonetic annotation [17].  Three 
annotators used Audacity to create a label track for each audio 

file, and labeled phones and their timestamps are exported as 
a text file.  Phones were labeled not according to their 
dictionary pronunciation in American English but as they had 
been uttered.  This was done to better capture the effect of 
singing as well as the singer’s accent on the standard 
pronunciation.  We also included two extra labels, sil and sp, 
to mark the lengths of silence or inhalation between words 
(and, occasionally, between phones mid-word) and all 
duration-less word boundaries, respectively (see Fig. 1).  
Labels of one annotator were checked by another to ensure 
inter-rater consistency. 

C. Corpus Composition 
Due to the time-consuming nature of phonetic transcription 

and the limitations on manpower, for the first version of the 
corpus we only manually annotated the singing data of 12 
subjects.  They include 6 males and 6 females and represent 
all voice types and accent types (see Table III).  For each 
subject, we selected 4 songs to annotate.  To ensure that all 20 
songs were annotated at least once for both genders and that 
the number of annotated phones for each subject remained 
roughly equal, we ranked the songs by the number of phones 
estimated using the CMU Dictionary and assigned them 
accordingly (see Table I).  At this stage, each subject has 

 
TABLE   I 

SONGS IN THE NUS CORPUS 
 

Song Name Artist / Origin (Year) Tempo 
(bpm) 

Audio Length 
Estimate (s) 

Phone Count 
Estimate 

Female 
Subjecta 

Male 
Subjecta 

Edelweiss The Sound of Music (1959) Med (96) 65 140 03 11 

Do Re Mi The Sound of Music (1959) Fast (120) 67 280 05 08 

Jingle Bells Popular Christmas Carol Fast (120) 85 630 05 08 

Silent Night Popular Christmas Carol Slow (80) 165 340 01 09 

Wonderful Tonight Eric Clapton (1976) Slow (80) 180  450 02 & 06 07 & 10 

Moon River Breakfast at Tiffany's (1961) Slow (88) 160 380 05 08 

Rhythm of the Rain The Cascades (1962) Med (116) 85 460 04 12 

I Have a Dream ABBA (1979) Med (112) 135 390 06 10 

Love Me Tender Elvis Presley (1956) Slow (72) 140 310 03 11 

Twinkle Twinkle Little Star Popular Children's Song Fast (150) 115 640 01 09 

You Are My Sunshine Jimmy Davis (1940) Slow (84) 167 620 02 & 06 07 & 10 

A Little Love Joey Yung (2004) Slow (84) 53 250 01 09 

Proud of You Joey Yung (2003) Slow (84) 140 680 03 11 

Lemon Tree Fool's Garden (1995) Fast (150) 160 900 05 08 

Can You Feel the Love Tonight Elton John (1994) Slow (68) 175 540 04 & 06 10 & 12 

Far Away from Home Groove Coverage (2002) Med (112) 140 680 04 12 

Seasons in the Sun Terry Jacks (1974); Westlife (1999) Med (100) 175 920 01 09 

The Show Lenka (2008) Fast (132) 200 980 03 11 

The Rose Bette Midler (1979) Slow (68) 175 450 02 07 

Right Here Waiting Richard Marx (1989) Slow (88) 160 550 02 & 04 07 & 12 
a Number in these columns are code identifications of subject singers. See Table III 



around 2100 phones annotated, and the corpus contains a total 
of 25,474 phone instances.  

Annotation for spoken lyrics is generated by aligning the 
manually-labeled phone strings of the sung lyrics to the 
spoken lyrics using conventional Gaussian Mixture Model 
(GMM) – Hidden Markov Model (HMM) system trained on 
the Wall Street Journal (WSJ0) corpus (see Sec. 5 for details).  
While numerous discrepancies might exist between the actual 
sung and spoken versions, arising from the articulatory 
peculiarities of subjects and the differing methods of 
alignment, the annotated spoken lyrics allow us to make broad 
and preliminary observations about the extent of phonemic 
stretching between sung and spoken lyrics.  As part of our 
future work, we will expand our corpus to include manual 
annotations of the spoken lyrics. 

IV. DURATION ANALYSIS 

A. Consonants Stretching 
In singing, vowels are stretched to maintain musical notes 

for certain durations, and their durations are to a large extent 
dictated by the score.  While the stretching of vowels is much 
more pronounced, consonants are nevertheless stretched at a 
non-trivial level (see Fig. 2).  As the factors influencing 
consonant duration are less apparent than those for vowels, 
we will explore not only how much stretching takes place but 
also what may affect the amount of stretching.  

 
The stretching ratio is computed as follows, 
 

sr = Tsinging / Tspeech ,                            (1) 
 
where sr is the stretching ratio and Tsinging and Tspeech the 

durations of the phoneme in singing and the corresponding 
speech, respectively.  The higher the sr value, the more the 
phoneme is stretched in singing. 

In the speech-to-singing conversion system developed in 
[13], the authors use fixed ratios for different types of 
consonants.  The ratios used are experimentally determined 
from observations of singing and speech signals.  Using the 
NUS-48E corpus, we analyzed the stretching ratio of 

 
Fig. 2   Comparison on Duration Stretching  

of Vowels and Consonants in singing 

 
Fig. 1  SIL and SP labels denoting boundaries 

TABLE   II 
PHONEMES AND PHONEME CATEGORIES 

 
Class CMU Phonemes  

Vowels AA, AE, AH, AO, AW, AY, EH, ER, EY, 
IH, IY, OW, OY, UH, UW 

Semivowels W, Y 

Stops B, D, G, K, P, T 

Affricates CH, JH 

Fricatives DH, F, S, SH, TH, V, Z, ZH 

Aspirates HH 

Liquids L, R 

Nasals M, N, NG 

 

TABLE   III 
SUBJECTS IN THE NUS CORPUS 

 

Code Gender Voice Type Sung Accent Spoken Accent 

01 F Soprano North American North American 

02 F Soprano North American North American 

03 F Soprano North American Mild Local 
Singaporean 

04 F Alto Mild Malay Mild Malay 

05 F Alto Malay Malay 

06 F Alto Mild Malay Mild Malay 

07 M Tenor Mild Local 
Singaporean 

Mild Local 
Singaporean 

08 M Tenor Northern Chinese Northern Chinese 

09 M Baritone North American North American 

10 M Baritone North American Standard 
Singaporean 

11 M Baritone North American North American 

12 M Bass Local Singaporean Local Singaporean 

 



consonants.  Given that the phoneme alignment on speech 
data is automatically generated with a speech recognizer 
while the phoneme boundaries on singing data are manually 
annotated, the results remain preliminary observations. 

As shown in Fig. 3, among the 7 types of consonants 
compared, liquids, semivowels, and nasals exhibit larger 
stretching ratios (2.2371, 1.9852, and 1.7027, respectively.)  
This result conforms to the intuition that these types of 
sonorants could be sustained and articulated for a longer 
period of time than others types such as stops and affricates.  

Another interesting question is how the consonants are 
stretched in syllables of various lengths.  The length of the 
syllables may have an effect on the length of consonants.  As 
shown in Fig. 4, when syllable length starts to grow, the 
stretching ratio of semivowels increases accordingly. After 
the syllable length reaches around 1 second, however, the 
stretching ratio of semivowels tends to decrease. Not 
surprisingly, since vowels are the dominant constituent of 
syllables, the stretching ratio of vowels keeps growing when 
syllables become longer.  

Observations on other types of consonants are similar to 
that discussed above for semivowels. 

B. Subject Variations on Consonants Stretching 
As observations in the previous section only describe an 

overarching trend across all consonants for all subjects, it is 
important to check whether individual subjects follow such a 
trend consistently.  We first investigated the differences with 
respect to gender.  Fig. 5 shows the probability density 
functions (PDF) for the stretching ratios of both gender 
groups.  The difference between them is negligible, 
suggesting that consonant stretching ratio is gender-
independent. Next, we compared individual subjects.  For 
example, subjects 05 and 08 contributed the same 4 songs, Do 
Re Mi, Jingle Bells, Moon River, and Lemon Tree.  Subject 05 
is a female with Malay accent and has had two years of choral 

experience at the time of recording, while subject 06 is a male 
with northern Chinese accent and had no vocal training 
whatsoever.  As Fig. 6 shows, the distributions of the 
consonant stretching ratios of the two subjects remain roughly 
the same despite individual differences in accent and musical 
exposure. Therefore, the extent of consonant stretching may 
be attributed more to the act of singing itself than any 
discrepancy in the vocal practice of the singers.  

C. Syllabic Proportions of Consonants 
Syllabic proportions are calculated as quotients of the 

consonant durations and the syllable durations.  A phone with 
longer duration might not take up a higher proportion as it 
may be part of a long syllable. 

Figure 7 shows the syllabic proportion for all consonant 
types and both gender groups.  Overall, semivowels have the 
highest proportion while aspirates and stops have the lowest.  
With aspirates as the lone exception, the syllabic proportions 
of all consonant types are higher in males than in females.  

 
Fig. 4   Comparison on Duration Stretching Ratio across Different Length of 

Syllables for Vowels and Semivowels 

 
 

Fig. 3  Average Stretching Ratios of Seven Types of Consonants 



Further observation confirms that the absolute duration 
lengths of both consonants and syllables are larger in male 
subjects.  This is an unexpected and interesting phenomenon 
given the observation made in the last subsection, namely that 
consonant durations seem to be stretched to similar extents in 
subjects of both genders.   

Three factors could contribute to such a phenomenon.  First, 
male and female subjects may have somewhat different 
duration distributions for consonants and vowels within the 
spoken syllables to begin with.  Second, the stretching of sung 
vowels could exhibit gender-related discrepancies.  Lastly, 
structure of the same syllable in the lyrics could be different 
between speech and singing, especially for subjects who 
would sing in a different accent.  A dropped consonant or a 
diphthongized vowel could alter syllable makeup and affect 
syllable length.  Once we have expanded our corpus to 
include phonetic annotations for the spoken lyrics, we plan to 
further our comparison study to examine these factors.  

D. Consonant Position and its Effect on Proportion 
 Within a syllable, consonants may appear at different 

positions.  For example, in the word love (/l/ /ah/ /v/), 
consonant /l/ is located at the beginning of the word; while in 
soul (/s/ /ow/ /l/), it is at the end. We are interested to see 
whether this positioning has any effect on the syllabic 
proportion. We first defined four consonant positions: 

1. Starting: at the beginning of a word, e.g. /g/ in go 
2. Preceding: preceding a vowel, but not at the beginning 

of a word, e.g. /m/ in small 

3. Succeeding: succeeding a vowel, but not at the end of 
a word, e.g. /l/ in angels 

4. Ending: at the end of a word, e.g. /t/ in at 
We compared the syllabic proportions for the seven 

consonant categories with respect to positioning. The results 
are shown in Fig. 8.  Semivowels and stops at the starting 
position are much more prominent than those at the end, 
while the opposite is observed for affricates and nasals.  The 
syllabic proportions of fricatives, aspirates and liquids are 
largely similar between the starting and ending position.  

For all consonants, the proportion for preceding position is 
significantly lower than that of the starting one.  The 
phenomenon is mirrored for the succeeding and ending 
positions, in which the latter is much more prominent than the 
former. 

V. SPECTRAL ANALYSIS 

Although we could build a conventional Gaussian Mixture 
Model (GMM) – Hidden Markov Model (HMM) system 
using the NUS-48E corpus, the performance is expected to be 
low mainly due to the following two factors: the limited 
amount of speech data and the variation of accents among the 
subjects. While few large, high-quality singing corpora are 
available for academic research, there are numerous standard 
speech corpora. We adopted the Wall Street Journal (WSJ0) 
corpus, a large collection of read speech with texts drawn 
from a machine-readable corpus of Wall Street Journal news, 

 
Figure 7  Mean syllabic proportions for different types of consonants 

 
Figure 8  Proportion comparison of consonants in different positions 

 
Fig. 5   Comparison on Probability Density Function of Consonants Duration 

Stretching Ratio with Respect to Gender 
 

Fig. 6   Comparison on Consonants Duration Stretching Ratio of Subject 05 
and Subject 08 



to train our speech GMM-HMM system, which is built to 
maximize the likelihood of the training data using the Hidden 
Markov Model Toolkit (HTK). The system adopts the CMU 
phoneme set used in the NUS-48E corpus and has a total of 
2419 tied triphone states to model the various phoneme 
realizations in different acoustic contexts. Each state is 
modeled by a GMM with 16 components. On the benchmark 
5k close vocabulary speech recognition task, our model has a 
word error rate (WER) of 5.51% when decoding with the 
bigram language model.  

For comparison purpose, we also built a simple monophone 
based GMM-HMM system using the singing data of the 
NUS-48E corpus. Instead of the doing automatic alignment of 
the training data, we fixed the phoneme boundary according 
to the human annotations during training. Similarly, this 
singing GMM-HMM system also has 16 Gaussian for each 
state.  

Both the speaking and singing waveform signals are 
processed with a 25ms time window and a shift of 10ms. 
Twelve dimensional MFCC features together with an energy 
term are extracted from each time window. These 13 terms, 
along with their first order and second order derivatives, make 
up the final, 39-dimensional feature vector.  

A. Phoneme likelihood score comparison 
The GMM-HMM system trained on the WSJ0 corpus 

captures the spectral characteristics of the speech signals, and 
we used it to perform alignment on both the speech and 
singing data in the NUS-48E corpus.  The alignment on 
singing data was restricted with the manually labeled 
boundaries.  During both alignment tasks, the likelihood score 
generated by the GMM-HMM system were stored.  Since the 
system is trained on a speech corpus, it is expected to perform 
worse on singing data.  However, the difference between the 
likelihood scores of singing and speech phonemes carries 
useful information.  It can serve as an indirect measure of the 
distance between the acoustic representation of the singing 
phoneme and that of the speech phoneme, i.e. a higher 
difference between the likelihood scores implies greater 
discrepancy between the acoustic characteristics of the two 
signals. 

The likelihood score for each phoneme is a cumulative 
score on all frames contained in that phoneme.  As durations 
of different phones vary significantly, the cumulative scores 
could be misleading.  Thus we use the average likelihood 
score, which is computed by dividing the cumulative score by 
the frame count. 

Then, we define the Likelihood Difference (LD) as  
 

LD = abs(ALSsinging – ALSspeech),                  (2) 
 
where ALSsinging and ALSspeech are the average likelihood 

score for the singing phoneme and speech phoneme, 
respectively.  As we only wished to gauge the extent of the 
likelihood differences, the absolute value of the difference is 
used to avoid negative scores cancelling out positive ones. 

The comparison of likelihood differences between singing 
and speech phonemes of all phoneme types are shown in Fig. 

9.  Results show that females have higher likelihood 
differences for all phoneme types, especially liquids, which 
implies that there may be more differences in terms of 
accoustic features on female singing.  

The likelihood differences of affricates and fricatives are 
lower than the other categories, suggesting that the accoustic 
features of these two phoneme types may be more similar 
between singing and speech. 

While the 39-dimentional MFCC feature vector preserves 
the identity of the phoneme in question, it might have 
neglected information indicative of the difference between 
singing and speech.  Therefore, likelihood difference is by no 
means a definitive measure on the differences of singing and 
speech phonemes. However, our observations may provide 
clues for further studies. 

B. Understanding the effects of duration on MFCCs 
As variations in phoneme duration is one of the major 

differences between speaking and singing, we conducted 
preliminary experiments to see if they affect the MFCC 
features commonly used for speech analysis.  

For simplicity, we converted duration into a discrete 
variable by dividing its whole value range into 10 bins with 
equal cumulative probability mass, i.e. each bin contains 
around 10% of the samples. Binning is carried out for each 
and every phoneme. We then estimate a single Gaussian to 
model the MFCC feature distribution for each bin of the 
phoneme. Ideally, there should be 390 different models, i.e. 
39 phonemes each having 10 duration bins.  Because the sung 
and spoken instances of a phoneme are binned together, the 
duration range of the sung instances could make it so that the 
spoken instances might not be distributed into all 10 bins, and 
vice versa. In the end, we obtained 348 separate models for 
speech and 366 for singing.  

We then built decision trees to cluster these models 
together by asking questions based on the durations. For each 
phoneme, the 10 bins require 9 boundary values to split and 
hence 9 questions on the decision tree. The speech models 
and singing models are clustered separately. Clustering is 
carried out at each step by selecting the question that 
increases the data likelihood the most. If changes in a 
phoneme’s MFCC features are affected by its duration, it 
would be more difficult to reduce the number of model 
clusters across the duration range, resulting in a lower 
reduction rate after clustering. After the decision tree 

 
Fig. 9  Mean Differences of Likelihood Scores for All Phoneme Categories 



clustering, we obtained 140 clusters for speech models and 
177 clusters for singing models. The relative model reduction 
rate is 59.78% and 51.64%, respectively.  

C. Understanding the effects of pitch on MFCCs 
We conducted the same set of experiments to evaluate the 

effects of pitch on the MFCC features. We also used 10 bins 
to discretize the pitch values and to ensure that all the bins 
have balanced cumulative density masses. After binning, we 
obtained 334 models for speech and 342 for singing. After 
decision tree building and clustering, the number of models 
was reduced to 182 for speech and 259 for singing, yielding 
reduction rates of 45.51% and 24.27%, respectively. The 
reduction rate for singing data is much lower than that of 
speaking data, especially when compared to the duration 
based clustering, suggesting that pitch differences can bring 
more variations to MFCC features. 

VI. CONCLUSION 

In this paper, we introduce the NUS Sung and Spoken 
Lyrics Corpus (NUS-48E Corpus), which is an ongoing effort 
toward a comprehensive, well-annotated dataset for singing 
voice related research.  The corpus contains: 12 subjects 
representing various accents and extents of musical 
background; 48 songs with reasonably balanced phoneme 
distribution.  To the best of our knowledge, the NUS-48E 
corpus is the first singing voice dataset to offer annotations on 
the phone level. 

Using our corpus, we conducted a comparative study of 
sung and spoken lyrics.  Specifically, we investigated the 
duration and spectral characteristics of the phonemes in 
singing and speech.  A preliminary analysis on the stretching 
ratio of sung phonemes is presented.  Differences among 
stretching ratios of seven consonant categories are compared 
and the variations among subjects discussed.  We investigated 
the syllabic proportion of consonants in sung lyrics with 
respect to consonants types as well as consonant positions 
within the syllable.  Using a GMM-HMM system trained on a 
large speech corpus, we studied the difference between 
singing and speech phonemes in terms of MFCC features. The 
effects of duration and pitch on acoustic features are also 
discussed.  The level of difference was measured through 
Likelihood Difference, which is based on the likelihood score 
generated by the GMM-HMM system. The effects of duration 
and pitch on MFCC features are examined by clustering 
acoustic models with decision trees. 

VII. FUTURE WORK 

While the NUS-48E corpus contains only 48 annotated 
songs due to limitations on time and qualified manpower, we 
have recorded a total of 420 song samples (21 subjects, each 
singing all 20 songs in Table I).  On the one hand, we will 
continue to enlarge our corpus by annotating the remaining 
songs. On the other hand, we will begin annotating the spoken 
data in order to provide the ground truth for future 
comparison studies.  Using the enlarged corpus, we would 
also like to repeat some of the works mentioned in Section II 

to provide quantitative verifications for the observations 
reported in the literature. 

As the comparison study presented in this paper is 
preliminary in nature, its results could be further explored and 
analyzed.  Subsequent experiments will aim to answer the 
question and test the theory raised by the current observations, 
such as the differing syllabic proportions of consonants in 
male subjects.  In the process, we hope to unearth new 
observations and raise new questions that could advance the 
community’s understanding of the relationship between 
singing voice and speech. Eventually, we seek to combine the 
knowledge gained from the corpus and the literature to better 
adapt state-of-the-art speech evaluation technologies for the 
singing voice. 
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