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Abstract—Electroencephalography (EEG) based preliminary
examination has been proposed in the clinical brain death deter-
mination. Multivariate empirical mode decomposition(MEMD)
and approximate entropy(ApEn) are often used in the EEG signal
analysis process. MEMD is an extended approach of empirical
mode decomposition(EMD), in which it overcomes the problem
of the decomposed number and frequency, and enables to extract
brain activity features from multi-channel EEG simultaneously.
ApEn as a complexity based method appears to have potential
for the application to physiological and clinical time series data.
In our previous studies, MEMD method and ApEn measure were
always used severally, if MEMD and ApEn are used to analysis
the same EEG signal simultaneously, the result of experiment
will be more accurate. In this paper, we present MEMD method
and ApEn measure based blind test without knowing about the
clinical symptoms of patients beforehand. Features obtained from
two typical cases indicate one patient being in coma and another
in quasi- brain-death state.
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I. INTRODUCTION

For supporting the diagnosis of brain death, we have pro-

posed an EEG preliminary examination method as a reliable

yet safety and rapid way for the determination of brain death

[1]. That is, after three items have been verified, and an EEG

preliminary examination along with real-time recorded data

analysis method is applied to detect the brain wave activity

at the bedside of patient. To extract informative features from

noisy EEG signals and evaluate their significance, ApEn mea-

sure and MEMD were proposed for the EEG analysis in our

previous study. ApEn is to extract informative features from

noisy EEG signals and evaluate their statistical significance,

several complexity measures are developed for the quantitative

EEG analysis [3]. A robust principal factor analysis (PFA)

associated with independent component analysis (ICA) ap-

proach is developed to reduce the power of additive noise

and separate the brain activities and interference sources [2].

In the determination of brain death, EEG energy analysis is

used to evaluate the brain activity. Several methods of EEG

energy analysis such as empirical mode decomposition (EMD)

[1] and multivariate empirical mode decomposition (MEMD)

[2] have been proposed to evaluate the brain activity [3].

The MEMD is a fully data-driven time- frequency technique

which adaptively decomposes a set of signals into a finite

set of amplitude-frequency modulated components, namely

intrinsic mode functions (IMFs). In this paper, we present

ApEn measure and MEMD based blind experiment to analysis

the real-life recorded EEG signal without knowing any clinical

symptoms of patients. Feature differences between 2 cases

indicate one patient being in coma state and the other in

quasibrain- death state.

II. METHOD OF DATA ANALYSIS

A. Approximate Entropy

Approximate entropy (ApEn) is a regularity statistic quan-

tifying the unpredictability of fluctuations in a time series that

appears to have potential application to a wide variety of phys-

iological and clinical time-series data [12], [13]. Intuitively,

one may reason that the presence of repetitive patterns of

fluctuation in a time series renders it more predictable than

a time series in which such patterns are absent.

Given a time series {x(n)}, (n = 1, · · · , N ), to compute

the ApEn(x(n),m, r) (m: length of the series of vectors, r:

tolerance parameter) of the sequence, the series of vectors

of length m, v(k) = [x(k), x(k + 1), · · · , x(k + m − 1)]
is firstly constructed from the signal samples {x(n)}. Let
D(i, j) denote the distance between two vectors v(i) and v(j)
(i, j ≤ N−m+1), which is defined as the maximum difference

in the scalar components of v(i) and v(j), or

D(i, j) = max
l=1,··· ,m

|vl(i) − vl(j)| . (1)

Then, we further compute the Nm,r(i), which represents the

total number of vectors v(j) whose distance with respect to the
generic vector v(i) is less than r, or D(i, j) ≤ r. Now define

Cm,r(i), the probability to find a vector that differs from v(i)
less than the distance r. And φm,r, the natural logarithmic

average over all the vectors of the Cm,r(i) probability as

Cm,r(i) =
Nm,r(i)

N − m + 1
, (2)

φm,r =

∑N−m+1

i=1
log Cm,r(i)

N − m + 1
. (3)

For m + 1, repeat above steps and compute φm+1,r. ApEn

statistic is given by

ApEn(x(n),m, r) = φm,r − φm+1,r . (4)



The typical values m = 2 and r between 10% and 25%

of the standard deviation of the time series {x(n)} are often

used in practice[12].

Furthermore, base on the algorithm for computing ApEn

of one sequence, we extend it in the temporal domain along

timecoordinate of EEG signal. Supposing an EEG data series

SN consists of N sequence intervals {xi(n)}, the ApEn

measure is carried out through each interval. We define the

dynamic ApEn measure of given EEG signal as

ApEn(SN ,m, r) = [ApEn(x1(n),m, r), ...,

ApEn(xN (n),m, r)] (5)

Consequently, in our experiment, the ApEn(SN , m, r) statistic

measures the variation the of complexity of a EEG data series

SN . The occurrence of irregular pattern of one interval is

excepted to be followed by the next in brain-death EEG.

B. Existing EMD Algorithm

EMD decomposes the original signal into a finite set of

amplitude- and/or frequency-modulated components, termed

IMFs, which represent its inherent oscillatory modes [11].

More specifically, for a real-valued signal x(k), the standard
EMD finds a set of N IMFs {ci(k)}N

i=1, and a monotonic

residue signal r(k), so that

x(k) =
n∑

i=1

ci(k) + r(k). (6)

IMFs ci(k) are defined so as to have symmetric upper and

lower envelopes, with the number of zero crossings and the

number of extrema differing at most by one. The process to

obtain the IMFs is called sifting algorithm.

The first complex extension of EMD was proposed in [3].

An extension of EMD to analyze complex/bivariate data which

operates fully in the complex domain was first proposed in

[4], termed rotation-invariant EMD (RI-EMD). An algorithm

which gives more accurate values of the local mean is the

bivariate EMD (BEMD) [10], where the envelopes correspond-

ing to multiple directions in the complex plane are generated,

and then averaged to obtain the local mean. An extension

of EMD to trivariate signals has been recently proposed

in [8]; the estimation of the local mean and envelopes of

a trivariate signal is performed by taking projections along

multiple directions in three-dimensional spaces.

C. The n-Variate EMD Algorithm[5]

For multivariate signals, the local maxima and minima may

not be defined directly because the fields of complex numbers

and quaternions are not ordered [8]. Moreover, the notion of

‘oscillatory modes’ defining an IMF is rather confusing for

multivariate signals. To deal with these problems, the multiple

real-valued projections of the signal is proposed in [5]. The

extrema of such projected signals are then interpolated com-

ponentwise to yield the desired multidimensional envelopes of

the signal. In MEMD, we choose a suitable set of direction

vectors in n-dimensional spaces by using: (i) uniform angular

coordinates and (ii) low-discrepancy pointsets.

The problem of finding a suitable set of direction vectors

that the calculation of the local mean in an n-dimensional

space depends on can be treated as that of finding a uniform

sampling scheme on an n sphere. For the generation of a

pointset on an (n − 1) sphere, consider the n sphere with

centre point C and radius R, given by

R =
n+1∑

j=1

(xj − Cj)
2. (7)

A coordinate system in an n-dimensional Euclidean space

can then be defined to serve as a pointset on an (n−1) sphere.
Let {θ1, θ2, · · · , θn−1} be the (n−1) angular coordinates, then
an n-dimensional coordinate system having {xi}

n
i=1 as the n

coordinates on a unit (n − 1) sphere is given by

xn = sin(θ1) × · · · × sin(θn−2) × sin(θn−1). (8)

Discrepancy can be regarded as a quantitative measure for

the irregularity (non-uniformity) of a distribution, and may

be used for the generation of the so-called ‘low discrepancy

pointset’, leading to a more uniform distribution on the n

sphere. A convenient method for generating multidimensional

‘low-discrepancy’ sequences involves the family of Halton

and Hammersley sequences. Let x1, x2, · · · , xn be the first

n prime numbers, then the ith sample of a one-dimensional

Halton sequence, denoted by rx
i is given by

rx
i =

a0

x
+

a1

x

2

+
a2

x

3

+ · · · +
as

x

s+1

, (9)

where base-x representation of i is given by

i = a0 + a1 × x + a2 × x2 + · · · + as × xs. (10)

Starting from i = 0, the ith sample of the Halton sequence

then becomes

(rx1

i , rx2

i , rx3

i , · · · , rxn

i ). (11)

Consider a sequence of n-dimensional vectors {v(t)}T
t=1 =

{v1(t), v2(t), · · · , vn(t)} which represents a multivariate sig-

nal with n-components, and xθk = {xk
1 , xk

2 , · · · , xk
n} denoting

a set of direction vectors along the directions given by angles

θk = {θk
1 , θk

2 , · · · , θk
n−1} on an (n − 1) sphere. Then, the

proposed multivariate extension of EMD suitable for operating

on general nonlinear and non-stationary n-variate time series

is summarized in the following.

1) Choose a suitable pointset for sampling on an (n − 1)
sphere.

2) Calculate a projection, denoted by pθk(t)}T
t=1, of the

input signal {v(t)}T
t=1 along the direction vector xθk ,

for all k (the whole set of direction vectors), giving

pθk(t)}K
k=1

as the set of projections.

3) Find the time instants {tθk

i } corresponding to the max-

ima of the set of projected signals pθk(t)}K
k=1

.

4) Interpolate [tθk

i ,v(tθk

i )] to obtain multivariate envelope

curves eθk(t)}K
k=1

.
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Fig. 1. The layout of six exploring electrodes.

5) For a set of K direction vectors, the mean m(t) of the
envelope curves is calculated as

m(t) =
1

K

K∑

k=1

eθk(t). (12)

6) Extract the ‘detail’ d(t) using d(t) = x(t)−m(t). If the
‘detail’ d(t) fulfills the stoppage criterion for a multi-

variate IMF, apply the above procedure to x(t) − d(t),
otherwise apply it to d(t).

The stoppage criterion for multivariate IMFs is similar to the

standard one in EMD, which requires IMFs to be designed in

such a way that the number of extrema and the zero crossings

differ at most by one for S consecutive iterations of the sifting

algorithm. The optimal empirical value of S has been observed

to be in the range of 2–3 [9]. In the MEMD, we apply this

criterion to all projections of the input signal and stop the

sifting process once the stopping condition is met for all

projections.

III. EXPERIMENTS AND RESULTS

A. EEG Experiment

The patients’ EEG signal was collected by a portable EEG

system (NEUROSCAN ESI) in a hospital in Shanghai. In

the EEG recording, only nine electrodes are chosen to apply

to patients. Among these electrodes, six exploring electrodes

(Fp1, Fp2, F3, F4, C3 and C4) as well as GND were placed

on the forehead, and two electrodes (A1, A2) as the reference

were placed on the earlobes based on the standardized 10-20

system (Fig. 1). The sampling rate of EEG was 1000 Hz and

the resistances of the electrodes were set to less than 10 kΩ.

B. A Patient with a Coma State

First, we use ApEn to analysis the patients’ EEG signal.

In our previous study, when the patients in Quasi-Brain-Death

state, ApEn value will be approximate to 1, or greater than 1.

Another case of brain-death state is the value of ApEn close

to 0. However the patients’ brain activity in the coma state

produces ApEn of a low number but not approximate to 0.
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Fig. 2. Approximate Entropy measure’s distribution and average value of the
first Patient.

We first demonstrate our result by an example of a patient

who presented a similar symptom to a brain-death case. The

EEG examination was carried out one day in April 2010 and

lasted 1535 seconds. From the previous research, we have

demonstrated regular and predictable brain activities such as

a wave exists in the EEG of coma. As ApEn is suggested

as a complexity- based statistics to measure the regularity or

predictability of time series signal, and we calculate every 1

second data of each channel by ApEn measure(r=0.25) from

1 second to 1535 second. It can be seen for example, ApEn

measures distribution of channel Fp1 is mostly lower than 0.5,

and the average results of each channel are from 0.165 to

0.291(Fig. 2). According to the definition of the ApEn and

the similar ApEn distributions of near the range of 0.2 are

obtained from each channel, the result indicates the patient

still having spontaneous brain activity. Furthermore, clinical

diagnosis from the doctor says the patient is under treatment

up till now.

And then, we use MEMD to analysis the patients’EEG

signal. Through the MEMD method described in Section II,

we obtained 9 IMF components (C1 to C9) with different fre-

quency from high to low. Each IMF carries a single frequency

mode, illustrating the alignment of common scales within

different channels. Therefore, generally in our experiment, the

IMF components from C1 to C3 with the same high frequency

scales refer to electrical interference or other noise from

environment that contains in the recorded EEG. The residual

component (r) is not the typical useful components considered,

either. The desired components from C4 to C9 are combined

to form the denoised EEG signal, and changed into frequency

domain by fast Fourier transform (FFT). As showed in Fig. 3,

the upper line gives each channels denoised EEG signal in time

domain, and the lower line display the denoised EEG signal

of each channel in their frequency domain. With y-coordinate

in the scope from 0 to 7000 in the frequency domain, we
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Fig. 3. The first Patient for comatose patient used MEMD.

find the value of power spectra at 2-10 Hz is very high. The

average energy of each channel is 2.14×104. The analysis

result indicated the patient still had strong physiological brain

activity, and in fact, the patient was in a comatose state.

Furthermore, clinical diagnosis from the doctor confirm the

patient is in a coma state at recorded time.

C. A Patient in the Quasi-Brain-Death State

The second patient’s EEG examination was carried out one

day in June 2010, and was lasted 1030 seconds. Being similar

analysis to the previous, we calculate every 1 second data

of each channel by ApEn measure(r=0.25) from 0 second to

1030 second. It can be seen from the Fig. 4, comparing with

the first patient, ApEn measure distribution of each channel

is mostly over 0.9, and the average results of each channel

are from 0.972 to 1.22, and gives us a much higher ApEn

value of approximate to 1. According to the definition of

the ApEn, random sequence produces a higher ApEn value

of approximate to 1, we consider this patient’s EEG data is

without spontaneous brain activity. From this result above, we

suspect the patient was in the quasi-brain-death state. Then we

use the MEMD to analysis the patient’s EEG. As showed in

Fig. 5, with the same analysis of the first patient, contrary

to the first patient power spectrum, the value is in a low

range. The average energy of each channel is 0.229×104. The

analysis result indicate that this patient physiological brain

activity is extremely low and we suspect the patient was in

the quasi-brain- death state. Later, the clinical doctor confirm

this result is correct.
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Fig. 4. Approximate Entropy measure’s distribution and average value of the
second Patient.
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Fig. 5. The second Patient for quasi-brain-death state used MEMD.

D. The EEG Energy of all patients

EEG energy analysis is supplied to evaluate the brain

activity. EEG energy of healthy human is higher than comatose

patient and brain death. However, Fig. 6 show the EEG energy

of all patients. In Fig. 6, healthy human’s maximum EEG

energy of each channel is 7.42×104, and the minimum is

0.806×104. Contrary to this, brain deaths reflected no EEG

energy over 0.48×104. However, comatose patients’ EEG

energy of each channel is between 8.00×104 and 0.8×104.

This illustrate that the brain activity of comatose patients

whose EEG energy is close to the brain deaths’ are not high.

We speculate that they are brain damage. But another part of

comatose patients’ EEG energy is close to, even more than the



Fig. 6. The EEG energy of all the patients

healthy human’s. These patients still have high brain activity.

IV. CONCLUSIONS

In our previous studies,we use the MEMD and ApEn sever-

ally to analysis the state of patients. In this paper, we use both

of two methods to analysis the same EEG data.The experiment

is proposed and the analysis was carried out without any

clinical diagnosis of the patient, after our experiment, the

data analysis results have be compared to the diagnosis results

achieved by the clinical doctors. All the cases are completely

identical.
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