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Abstract—Brain-computer interfaces (BCIs) based on event-
related potentials (ERP) are communicating tools with severely
disabled people. P300 which is observed after 300 mili seconds
from stimuli is widely used for the operation principle of BCIs.
However the response time to the stimuli depends on a subject,
trial, and also a channel. Many existing approaches ignore this
variation and extract only low frequency component. We propose
a method to estimate the response time of P300 using Bayesian
estimation. The proposed method exhibited higher performance
in our auditory BCI.

I. INTRODUCTION

BCI aims to control a computer using brain signals without
any movements [1]. Electroencephalography (EEG), Mag-
netoencephalography (MEG), and Functional Magnetic Re-
sponse Imaging (fMRI) are mainly used for non-invasive
measuring of brain activity [1]. EEG is widely used to acquire
brain activity for BCI due to its noninvasive nature, low cost
and ease of use [2, 3, 4]. One of the most popular features
utilized in BCI is P300 [5, 6]. P300 is a brain response caused
over the parietal lobe when a subject reacts to an auditory or a
visual stimulus [7]. Fig. 1 shows an example of P300. In order
to avoid noise interference, existing BCIs average time-locked
signals from several trials [8].

These BCIs assume that P300 appears in the same response
time. However, this assumption is sometimes unreasonable,
and distorts the averaged signal. For example, changes in the
degree of mental fatigue, habituation, or level of attention of
the subject can affect the response time of P300 [8]. Especially,
for auditory stimuli, the response time varies widely since the
stimulus has duration and the timing of cognition depends on
the stimulus. Thus, simple averaged signals may not have clear
P300 waveform and have a possibility that its classification
accuracy decreases.

In this paper, we therefore propose a method to estimate
the delay in P300 based on Bayesian estimation, and apply
the proposed method to an auditory P300 BCI. Moreover,
we compare the proposed method with the simple averag-
ing. The proposed method provided clear P300 waveforms
and increased 6.3% classification accuracy compared to the
conventional method on average.

II. ALGORITHM USING BAYESIAN ESTIMATION

Let xi(n), (n = 0, . . . , T − 1, i = 1, . . . , N) be a discrete
observed signal that has P300 response, where T is the number
of sampling points, and N is the number of signals. Usually
N equals to the product of the number of channels and the
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Fig. 1. Example of P300. Each signal is averaged over 200 times. The subject
pays attention to low frequent auditory stimuli of an odd-ball task. There are
16 channels. P300 is observed around 0.5 seconds.

number of trials. We here introduce a model that xi(n) consists
of true P300 response x̄(n) and noise ηi(n),

xi(n) =x̄(n − τi) + ηi(n), (1)

where τi is the delay time for the ith signal.
Suppose that ηi follows the Gaussian distribution. Then the

probability density function for xi(n) is given by

p(xi|σ, x̄, τi) =
1

(
√

2πσ)T
exp

(
−‖xi − x̄τi‖2

2σ2

)
, (2)

where σ2 is the variance of ηi, xi = [xi(0), . . . , xi(T − 1)]>,
and x̄τi = [x̄(−τi), . . . , x̄(T − 1 − τi)]>, we also denote
x̄ = x̄0. The joint probability density function for the set
of samples, X = {x1, . . . , xN} is

p(X|σ, x̄, τ1, . . . , τN ) =
N∏

i=1

p(xi|σ, x̄, τi). (3)

We then introduce a prior distribution for the delay τi. Since
x̄(n) is also variable to be estimated, without loss of generality,
we assume that the average of τi is zero. Suppose α2 is the
variance of the delay time τi. Then the prior distribution is



given by

p(τi|α) =
1√
2πα

exp
(
− τ2

i

2α2

)
. (4)

Consequently, we have the posterior probability of τi from
Bayes’ theorem,

p(τ1, . . . , τN |X, σ, α, x̄) =
p(X|σ, x̄τi)

∏N
i=1 p(τi|α)

p(X)
(5)

Since p(X) is a constant for τi, the maximum a posteriori
(MAP) estimatiors τ∗

i and x∗ are obtained by maximizing
p(X|σ,xτi)

∏N
i=1 p(τi|α),

max
τ,x

log p(X|σ,xτi)
N∏

i=1

p(τi|α). (6)

The problem (6) is reduced to

min
τ,x

N∑
i=1

(‖xi − xτi
‖2 + µτ2

i ), (7)

where µ = σ2

α2 . We can find µ depending on the shape of
P300 wave or the cross variation. If α is close to zero and
µ is large, estimated τi is close to zero. Thus, when α → 0
and µ → ∞, the estimation is equivalent to the conventional
simple averaging. In order to obtain optimal x and τi, we
use the alternating optimization method which has two steps.
The first step is optimizing x with fixing τi (i = 1, . . . , N).
The second step is optimizing τi (i = 1, . . . , N) with fixing
x. We can obtain a local minima by repeating two steps
alternately because these steps monotonically decrease the
objective function (7). The optimization problem for the first
step is

min
x

J1 =
N∑

i=1

‖xi − xτi‖2. (8)

In Eq. (8), we summate differences between xi and shifted x
by τi. This is equivalent to summate differences between x
and shifted xi by −τi. Therefore, Eq. (8) is equivalent to

min
x

J ′
1 =

N∑
i=1

‖(xi)−τi − x‖2, (9)

where (xi)−τi is xi shifted with −τi. Eq. (9) is minimized
by the mean of (xi)−τi ,

x =
1
N

N∑
i=1

(xi)−τi . (10)

The optimization problem for the second step is

min
τi

J2 =
N∑

i=1

(‖xi − xτi‖2 + µτ2
i ). (11)

This problem can be solved for each i,

min
τi

‖xi − xτi‖2 + µτ2
i . (12)

Fig. 2. Flow chart of the proposed method.

Since τi is discretized, we can find the optimal delay changing
the value of τi. We set initial τi = 0 for all i.

After we obtain the optimal delay τ∗
i and averaged signal

x∗, the principal component analysis (PCA) is performed to
extract the components of P300. PCA extracts P300 features
not only in the time-shifted average x∗ = 1

N

∑N
i=1(xi)−τ∗

i
,

but also in the second-order moments in the training data. Let
u1, . . . , ur be major principal components of the training data
(xi)−τ∗

i
, (i = 1, . . . , N) and U = [u1, . . . , ur] ∈ RT×r.

For unlabeled test signal, we first obtain the delay. Let

si(τ) = [si(0 − τ) . . . si(T − 1 − τ)]> ∈ RT , (13)

where i = 1, . . . , M is the number of channels and τ is delay.
We estimate the optimal delay timeつまり by minimizing Eq.
(12) with x, that is

τ∗
i = min

τi

‖si − xτi‖2 + µτ2
i . (14)

Then the feature vector is given by

z = [s>
1 (τ∗

1 )U s>
2 (τ∗

2 )U . . . s>
M (τ∗

M )U ]>. (15)

We classify the feature vector z into P300 class or non-P300
class using the linear discriminant analysis (LDA).

We summarize our method in Fig. 2.

III. EXPERIMENTAL PROCEDURE

We conducted an experiment to 5 subjects who are from
19 to 32 years old male. We measured the brain signal with
an active 16ch EEG (g.GAMMAcap2, g.LADYbird (active),
g.GAMMAbox manufactured by Guger technologies). The
electrodes were located on FCz, FC2, FC1, Cz, CP1, CP2, Pz,
POz, P3, P4, TP8, TP7, C3, C4, C5 and C6, the ground was
AFz, and the reference was A2 (Fig. 3). Most of electrodes
were placed on parietal areas to observe ERP, and the remain-
ing electrodes were placed near the parietal area and temporal
lobe areas. EEG signals were amplified by a biological signal
amplifier (BA 1008, Digitex).



Fig. 3. Location of the electrodes. The positions are conformed to the extended
10-20 system. The ground is AFz and the reference is A2.

Fig. 4. Presentation scheme of the stimuli. There are four stimulus. Each
stimulus is presented five times in one trial

We used four speech stimuli,“ jou,”“ ge,”“ sa,”and
“yu.”These respectively mean“up,”“down,”“ left,”and
“ right” in Japanese. These stimuli are 0.5 seconds length,
and presented randomly 20 times in one trial (each stimulus
is presented five times in one trial). Each speech stimulus is
given by one of four loud-speakers and these speakers were
set from forth to back and from side to side. The order and the
position of the stimuli are at random. However each speaker
does not present stimuli in a row, and the same stimulus does
not present in a row. 50 trials were recorded. We depict the
presentation scheme of the stimuli in Fig. 4. Volume of the
stimuli is adjusted to listener-friendly level by the subject.

The subject was asked to close his eyes during the ex-
periment, and the target stimulus was given by a monitor
for each trial. He paid attention to the target stimuli, and
counted the number of the target stimuli. We applied 0.5Hz
analog high-pass filter and 100Hz analog low-pass filter by the
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Fig. 5. Classification accuracies of Subject 1.
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Fig. 6. Classification accuracies of Subject 2.

amplifier. We used 8-12Hz band stop filter to remove α wave.
The sampling frequency was 512Hz. We used MATLAB as
measuring software and an A/D converter (Contec AI 1664
LAX-USB).

IV. RESULTS

We performed five-fold cross validation, i.e., we randomly
divided the whole trial set into five subsets, and one of them
was used for the validation, and the other subsets were used for
the training. We repeated the procedure 5 times, and obtained
the averaged classification accuracy. We obtained the result
with a rank r that makes the classification accuracy the highest.

Figs. 5 to 9 show the classification accuracies with respect
to µ. Conv. is the case of time-locked signal of conventional
method. In these figures, the classification accuracies of the
proposed method are higher than those of the conventional
method when we chose an optimal µ. Figs. 10 and 11 show
waveforms after target and non-target stimuli. In Fig. 11, the
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Fig. 7. Classification accuracies of Subject 3.
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Fig. 8. Classification accuracies of Subject 4.

stronger peak is observed around 0.5s in P300 waveform of
right graph, compare to that of left graph. By contrast, both of
P300 waveforms seen in Fig. 10 are almost the same. Table I
shows the highest classification accuracy and the improvement
for each subject. Compared to the conventional method, the
classification accuracy of subject 5 increased 4.6%. On the
other hand, the improvement of subject 4 was the lowest
among all subjects. That is because both of P300 signals seen
in Fig. 10 are almost the same. Therefore we infer that it
makes the improvement lower.

Consequently, we conclude that P300 waveform is related to
the classification accuracy and the proposed method provided
higher classification accuracy.

V. CONCLUSION

We have proposed a new method to estimate delay time
of P300. The proposed method exhibited higher classification
accuracy compared to the conventional method. Since this
classification accuracy is from single trial, this proposed
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Fig. 9. Classification accuracies of Subject 5.
TABLE I

THE CLASSIFICATION RESULT OF CONVENTIONAL METHOD AND THE
PROPOSED METHOD

HHHH
proposed [%] conventional [%] improvement [%]

Subject 1 78.2 73.2 5.0
Subject 2 75.7 55.4 20.3
Subject 3 75.2 73.7 1.5
Subject 4 74.3 74.0 0.3
Subject 5 75.3 70.7 4.6
Average 75.7 69.4 6.3

method is practical enough if we make a decision from several
trials.
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Fig. 10. Waveform of Subject 4. Left graph and right graph show the wave-
forms of conventional methods and proposed method respectively. Channel
FC1 was cut out because it didn’t work well.

-3

-2

-1

0

1

2

3

4

5

0 0.20.40.60.8 1

A
m
p
l
i
t
u
d
e

[
�
V
]

Time [s]

target(mu = Inf)

nontarget(mu = Inf)

-3

-2

-1

0

1

2

3

4

5

0 0.20.40.60.8 1

A
m
p
l
i
t
u
d
e

[
�
V
]

Time [s]

target(mu = 101.6)

nontarget(mu = 101.6)

Fig. 11. Waveform of Subject 5. Left graph and right graph show the
waveforms of conventional methods and proposed method respectively.
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