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Abstract— Since the instantaneous frequencies of vocal signals 

always vary with time, it is inconvenient to use the conventional 
filter to remove the noise of vocal signals. In this paper, we pro-
pose a method that uses the generalized modulation to reshape 
and minimize the areas of the spectrograms of vocal signals. In-
stead of multiplying an exponential function with the first order 
phase, the generalized modulation is to multiply an exponential 
function whose phase is a higher order polynomial. With the 
proposed noise-removing algorithm based on generalized modu-
lation, the signal part and the noise part of a vocal signal can be 
well separated and the effect of noise can be significantly reduced.  
    

I. INTRODUCTION 

Noise removal is always an essential issue for vocal signal 
processing. Vocal signals are often interfered by the noise 
caused from surrounding environment, which degrades their 
intelligibility. There are several well-known techniques that 
can be used for noise reduction, such as the Wiener filter, the 
infinite impulse response, the finite impulse response filter, 
and the spectral subtraction method [1-5]. However, none of 
these methods considers that the spectrum of a vocal signal 
may vary with time and utilizes the time and the frequency 
domain characteristics simultaneously to design the filter. In 
this paper, we propose a new noise-removing algorithm based 
on the generalized modulation and time-frequency analysis. 

Since the spectrum of the noise always widely spread in 
the time-frequency domain, the area of a signal in the time-
frequency domain determines how much noise is remained 
after applying the filter [6]. With the proposed filter based on 
the generalized modulation, the area of the time-frequency 
distribution of a signal can be minimized and the effect of 
noise can hence be much reduced.            

Basically, a simple way to remove noise is by the use of 
frequency selective filters, i.e., one can use proper lowpass 
filters to separate the signal from the noise. With lowpass fil-
ters, the noise part whose frequency is beyond the highest fre-
quency of the signal can be removed. Nevertheless, a great 
deal of noise might still remain after the lowpass filtration if 
the signal bandwidth is large. Therefore, to further reduce 
noise, it is reasonable to think of modifying the signal into one 
with a narrower bandwidth before going to the lowpass filter-
ing step. This can be made by several methods; for example, 
by the combination of analytic signal generation and the con-
ventional modulation [7]. After obtaining the signal with a 
narrower bandwidth, a lowpass filter with lower cutoff fre-

quency then can be apply and hence the amount of noise 
would be further reduced.  

Although using a certain method can indeed remove more 
noise, we believe that it can be further attenuated. In this paper, 
instead of the conventional modulation, we introduce a new 
noise-removing algorithm based on the proposed generalized 
modulation, which can reshape and significantly minimize the 
areas of the spectrograms of vocal signals and hence achieve 
even better performances on noise reduction. Moreover, the 
fractional Fourier transform (FRFT) [8-12] is also applied in 
our noise-removing scheme.  

The whole noise-removing algorithm is plotted as in Fig. 1. 
In the modification stage of our algorithm, a series of methods, 
including the generalized modulation, are used to reshape the 
signal spectrogram. After that, the signal part is separated 
from the noise part in the next stage by a proper lowpass filter. 
The final step is the recovery stage, in which we reconstruct 
the signal by demodulation and the inverse FRFT.  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 1   Flowchart of the proposed noise-removing algorithm.  
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This paper is organized as follows. In Section II, the noise-
removing approach based on the conventional modulation is 
briefly illustrated. In Section III, the proposed generalized 
modulation method is introduced. In Section IV, we combine 
the fractional Fourier transform (FRFT) with the proposed 
generalized modulation in the noise–removing algorithm. In 
Section V, the simulation results are presented. A conclusion 
is made in Section VI. 

II. NOISE REMOVING BASED ON CONVENTIONAL  
MODULATION 

In this section, we discuss the noise-removing process 
based on the conventional modulation. The process consists of 
the time-frequency analysis, the analytic signal generation, 
and the conventional modulation. 

Firstly, the time-frequency analysis is an approach for ana-
lyzing signals in a two-dimensional (2-D) way – simultane-
ously in the time domain and in the frequency domain [13]. 
Different from the conventional frequency analysis based on 
the Fourier transform, it utilizes the short-time Fourier trans-
form (STFT) [14] for obtaining information in the 2-D time-
frequency plain. For example, Fig. 2(a) is the STFT of the 
fundamental harmonic part of a human vocal signal. On the 
other hand, Fig. 2(b) shows the Fourier transform of the same 
signal. In Fig. 2(a), one can obtain the instantaneous frequency 
of the signal varying with time, rather than the only frequency 
information provided in Fig. 2(b).  
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Fig. 2  (a) The STFT of the fundamental harmonic part of a human vocal 
signal. (b) The Fourier transform of the signal whose STFT is as in (a). 

Next, the analytic signal generation can be achieved by 
using the Hilbert transform [7]. For example, the analytic 
signal xa(t) of a signal x(t) is : 
 ( ) ( ) ( )a Hx t x t jx t= +  (1) 
where xH(t) is the Hilbert transform of x(t). Note that an 
important property of the analytic signal is : 

 ( )  for  0
( )  

0         for 0 a
X f f

X f
f
>

=  ≤
 (2) 

where Xa(f) and X(f) are the Fourier transforms of xa(t) and x(t), 
respectively. 

For example, if x(t) represents the human vocal signal as in 
Fig. 2(a), after applying the analytic signal conversion as in 
(1), the STFT of the resultant signal xa(t) is shown as in Fig. 
3(a). From Fig. 3(a), one can see that only the positive part of 
the signal remains after analytic signal conversion, just as the 
aforementioned property indicates.  

Finally, the conventional modulation is performed by mul-
tiplying an exponential function with the first order phase [7]. 
For example, a modulation function  mc(t) is in the form of : 

  1( ) exp( 2 )cm t j f tπ= −  (3) 
where f1 is the modulation frequency. After the conventional 
modulation operation, a signal will be frequency-shifted to a 
lower (if f1 > 0) or to a higher (if f1 < 0) location by the 
amount of f1 Hz in the frequency domain. The modulated sig-
nal y1(t) of a signal  x(t) is expressed as : 

  1( ) ( ) ( )cy t m t x t= =  exp(−j2π f1t)x(t). (4) 
For example, if x(t) represents the analytic human vocal signal 
as in Fig. 3(a), after applying the conventional modulation 
(with  f1 = 230) as in (4), the STFT of the resultant signal y1(t) 
is shown as in Fig. 3(b). From Fig. 3(b), one can see that the 
signal part originally located around 180~280Hz is shifted to a 
much lower frequency location around -55~55Hz.  
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Fig. 3  (a) The STFT of the human vocal signal in Fig. 2(a) after  analytic 
signal generation. (b) The STFT of the analytic signal in (a) after conventional 
modulation. 
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In order to discuss the noise-removing process, AWGN 
(additive white Gaussian noise) is then added to the human 
vocal signal. In Fig. 4(a) we show the STFT of this noisy sig-
nal. Since the added noise is AWGN, we can see that the noise 
is distributed over all frequencies. For measuring the error, we 
use NMSE (Normalized Mean Square Error) to represent the 
degree of the effect of noise. The NMSE is calculated as fol-
lows: 

 

2

2

( [ ] [ ])

[ ]
i

i

y i x i
NMSE

x i

−

=
∑
∑

 (5) 

where x[i] is the original signal and y[i] is the noisy version of 
the signal. Computation shows that the NMSE of the noisy 
signal is about 27.61%.  

If we attempt to use a lowpass filter for removing the noise 
right away, the cutoff frequency of the filter should be above 
280Hz, which is half the signal bandwidth (the bandwidth is 
about 580Hz as in Fig. 4(a)). After the lowpass filtration, only 
the noise part within the signal bandwidth remains. Fig.4 (b) 
indicates the remaining part after using the lowpass filter. 
Computation shows the NMSE of remaining part is reduced to 
1.83%. 

To further reduce the amount of noise by the same concept, 
we need to obtain as narrower signal bandwidth as we can. 
Thus, we apply the analytic signal generation and the conven-
tional modulation to the noisy signal, and the resultant signal 
is as Fig. 5(a) shows. From Fig. 5(a), one can see that the sig-
nal bandwidth is now only around 110Hz, which is a much 
smaller value compared with the one in Fig. 4. Now a low-
pass filter with only 55Hz cutoff frequency is needed to re-
move the noise while keeping the complete information of 
recovering the signal. Fig. 5(b) shows the remaining part. Af-
ter the lowpass filtration and signal reconstruction, the NMSE 
of the recovered signal is computed to be only 0.92%.  
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Fig. 4  (a) The STFT of the noisy human vocal signal (NMSE=27.61%). (b) 
The remaining part of the signal in (a) after using a proper lowpass filter (cut-
off frequency = 280Hz) (NMSE=1.83%). 
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Fig. 5 (a) The STFT of the noisy signal after analytic signal generation + 
conventional modulation. (b) The remaining part of the signal in (a) after 
using a proper lowpass filter (cutoff frequency = 55Hz)  (NMSE=0.92%). 

 
Although the signal bandwidth can be significantly re-

duced by the analytic signal generation and the conventional 
modulation operation, it is still possible for us to further nar-
row the signal bandwidth and hence achieve an extremely low 
error, by the proposed generalized modulation which we in-
troduce in the next section. In [15], we use the generalized 
modulation for reducing the number of sampling points of a 
signal. In fact, it can also be applied for noise reduction. 

III. GENERALIZED MODULATION FOR NOISE REDUCTION 

The goal of the generalized modulation operation is to 
make the bandwidth of each signal part as small as possible 
(Remember that narrower bandwidth means that less amount 
of noise will remain after being filtered).  

The conventional modulation operation is to multiply the 
signal by a linear phase exponential function, as in (4). Here, 
instead of (4), we perform the generalized modulation opera-
tion and multiplying x(t) by a higher order exponential func-
tion, mg(t) :  

 mod( ) ( ) ( ) ( )ulation
gx t y t m t x t→ =    (6) 

where  
 1

1 1 0( ) exp[ 2 ( )]n n
g n nm t j a t a t a t aπ −

−= − + + ⋅⋅⋅ ⋅ ⋅ ⋅ + + . (7) 
Note that the phase of mg(t) is an nth order polynomial. Since 
the instantaneous frequency of mg(t) is the derivative of the 
phase with respect to time,  the instantaneous frequency,  fin , 
can be derived as : 

          ( )1 arg ( )
2in g

df m t
dtπ

=   

        1
1 1 0[ ( )]n n

n n
d a t a t a t a
dt

−
−= − + + ⋅⋅⋅ ⋅ ⋅ ⋅ + +  

          1 2
1 1[ ( 1) ]n n

n nna t n a t a− −
−= − + − + ⋅⋅⋅ ⋅ ⋅ ⋅ + . (8) 

If STFTx(t, f) and STFTy(t, f) are the STFTs of x(t) and y(t), 
respectively, then 
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( , )ySTFT t f  
( , )x inSTFT t f f≅ +  

1 1
1 1( , [ ( 1) ])n n

x n nSTFT t f na t n a t a− −
−= − + − + ⋅⋅⋅ ⋅ ⋅ ⋅ + . (9) 

 
Therefore, with the generalized modulation in (7), one can 

adjust the “shape” of the time-frequency distribution of a sig-
nal more flexibly. Namely, we can “reshape” and thus “mini-
mize” the areas of the spectrogram of the signal. In other 
words, the generalized modulation has higher ability to reduce 
the bandwidth requirement for a signal and the amount of 
noise that would remain after lowpass filtration. 

For example, for the human vocal signal whose STFT is as 
in Fig. 3(a), its central frequency is plotted as in Fig. 6(a). 
Note that the central frequency varies with time. Then, in Fig. 
6(b), we use a 6th order polynomial as follows to approximate 
the central frequency curve in Fig. 6(a): 

 3456
6 193720360660336810124500)( tttttP +−+−=  

 253944 6987 64t t− + − . (10) 

Such a polynomial is called the “fitting polynomial” since it 
approximates the central frequency and “fits” it well. The ap-
proximation is performed by Legendre polynomial expansion 
[16]. That is, if the central frequency of the signal is h(t), then 
the nth order fitting polynomial used for approximating h(t) 
can be determined from: 

  
0

( ) ( )
n

n k k
k

P t a tϕ
=

=∑ , (11) 

 where  ∫
+

=
Tt

t kk dtttha 0

0

)()( φ , (12) 

  0 / 22( )
/ 2k k

t t T
t L

T T
ϕ

− − 
=  

 
. (13) 

[t0, t0+T] is the support of h(t), and { Lk(t) | k = 0, 1, 2, …} is 
the Legendre polynomial set that is orthonormal in the interval 
of t ∈ [−1, 1]. Since   
 

∫ +−+−= 4567
6 48429721325613517785)( ttttdttP  

                        3 217981 3494 64t t t− + − , (14) 
 
from (7)-(9), after obtaining and integrating the fitting poly-
nomial, we then apply the generalized modulation to the ana-
lytic signal by  

 mod
2( ) ( ) ( ) ( )ulation

a g ax t y t m t x t→ =  (15) 

where xa(t) represents the analytic signal as in Fig. 3(a) and     
 

 7( ) exp[ 2 ( ) ]gm t j P t dtπ= − ∫  
7 6 5exp[ 2 ( 17785 56135 72132j t t tπ= − − + −  

                  4 3 248429 17981 3494 64 )]t t t t+ − + − . (16) 
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Fig. 6  (a) The central frequency (varies with time) of the human vocal signal 
whose STFT is as in Fig. 3(a). (b) Using a 6th order polynomial to approxi-
mate the central frequency of the vocal signal. (c) The STFT of the signal in 
Fig. 3(a) after generalized modulation. 

 
The STFT of the resultant signal y2(t) is plotted as in Fig. 

6(c). From Fig. 6(c), one can see that the signal is reshaped to 
almost a straight line, and the bandwidth becomes much nar-
rower than the one in Fig. 3(b), which is derived by the con-
ventional modulation. 

For illustrating our noise-removing process, we apply the 
analytic signal generation and the generalized modulation to 
the noisy human vocal signal in Fig. 4(a). The STFT of the 
resultant signal is plotted as in Fig.7 (a). Again, the narrower 
the bandwidth is, the less the noise is contained. Now, since 
the signal bandwidth is only about 36Hz, we can use a 
lowpass filter with extremely low cutoff frequency (about only 
18Hz) to filter out the whole signal while keeping the infor-
mation we need to recover it. In Fig. 7(b), the remaining part 
is as indicated. After the lowpass filtration and reconstruction, 
the NMSE of the noise-removed signal is computed and is 
shown to be only 0.41%, which is a much smaller value com-
pared with all the error values mentioned previously. There-
fore, with the proposed generalized modulation operation, the 
bandwidth of a signal can be much reduced and the noise-
removing performance is obviously improved.   
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Fig. 7  (a) The STFT of the noisy human vocal signal in Fig. 4(a) after analyt-
ic signal generation + generalized modulation. (b) The remaining part of the 
signal in (a) after using a proper lowpass filter (cutoff frequency = 18Hz) 
(NMSE=0.41%). 
 

IV. COMBINING GENERALIZED MODULATION WITH THE 
FRACTIONAL FOURIER TRANSFORM 

In [8-12], the fractional Fourier transform (FRFT) was 
adopted to rotate the time-frequency distribution of a signal 
and improve the sampling efficiency. In this paper, we find 
that, combining the proposed generalized modulation with the 
FRFT, a very narrow signal bandwidth can be achieved and 
the noise-removing performance can be further improved. 

The definition of the FRFT is:  
[ ]( )FRFTO x tα

          
2 2cot 2 csc cot

1 cot ( )
j u j u t j t

j e x t dt
π α π α π α

α
∞ − +

−∞
= − ∫ . (17) 
FRFT is useful for signal decomposition and segmentation. 

It can be viewed as performing the Fourier transform 2α/π 
times. From [9], one can see that the FRFT has very close 
relations with the time-frequency distribution. If  

                      
( ) [ ] ( ){ }( )FRFT FRFTy t O O x t H uα α−=

      (18) 
where H(u) = 1 for u < u0 and H(u) = 0 for u > u0, then the 
FRFT filter in (18) is equivalent to placing a separating line in 
the time-frequency domain. The angle between the line and f-
axis is α and the distance between the line and the origin is u0.            

Besides signal decomposition and segmentation, the FRFT 
plays another role in our noise-removing scheme: To assist the 
generalized modulation in reducing the signal bandwidth by 
“rotating” the time-frequency distribution in advance.  

 
 
 
 
 
 
 

Note that, for the human vocal signal in Fig. 3(b), it has 
very large negative slope around 0.2 second, which causes the 
modulated signal as in Fig. 6(c) to be out-of-flatness around 
0.2 second. Therefore, it is more proper to rotate the time-
frequency distribution of the signal before performing 
generalized modulation for the signal, in order to alleviate the 
effect of large slope on the modulated signal. The rotation in 
the time-frequency domain can be done by the FRFT. 

In Fig. 8(a) and Fig. 8(b), we show the STFTs of y1(t) and 
y3(t), respectively, where y1(t) is defined as in (4), which is 
generated from the human vocal signal by performing the 
analytic signal conversion and the conventional modulation, 
and y3(t) is the FRFT of y1(t) :        

                         ( ) [ ]0.2
3 1( )FRFTy t O y t−= .            (19)  

Then, according to the 6th order polynomial that can 
approximate the central frequency of y3(t), one can perform the 
following generalized modulation operation for y3(t):    

 
mod

3 4 3( ) ( ) ( ) ( )ulation
gy t y t m t y t→ =     (20) 

where 
7 6 5( ) exp[ j2 ( 2920 9845 13076gm t t t tπ= − − + −  

                      4 3 2   8708 2963 388 19 )]t t t t+ − + + . (21) 
The central frequency and the fitting polynomial are shown as 
in Fig. 8(c).The STFT of y4(t) is plotted as in Fig. 8(d). In Fig. 
8(d), the signal becomes flatter and smoother around 0.2 second, 
and hence the bandwidth is further reduced. 

  For illustrating our noise-removing process, we apply our 
method to the noisy human vocal signal in Fig. 4(a). The STFT 
of the resultant signal is shown as in Fig. 9(a). Now, we can see 
that the bandwidth is further reduced (to only 24Hz) and we can 
use a lowpass filter with only 12Hz cutoff frequency to remove 
the noise, as Fig. 9(b) shows. After the lowpass filtration and 
reconstruction, the NMSE of the recovered signal is computed 
to be only about 0.41%. 

In Fig. 10, we restate our noise-removing algorithm with the 
aid of several diagrams. Since the analytic operation can remove 
the negative part, as in Fig. 10(b), and the FRFT can rotate the 
time frequency distribution of a signal, as in Fig. 10(c), they are 
helpful for reducing the signal bandwidth. However, even in Fig. 
10(c), the rectangular region circled by the dash lines still 
contains a lot of non-signal parts. Thus, it is proper to use the 
proposed generalized modulation scheme to “re-shape” the 
time-frequency distribution of the signal. After the proposed 
generalized modulation is applied, the signal bandwidth and 
hence the amount of the noise contained in the signal can both 
be minimized, as in Fig. 10(d).  
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Fig. 8  (a) The STFT of the human vocal signal in Fig. 2(a) after analytic 
signal generation + conventional modulation. (b) After performing the FRFT, 
the STFT in (a) is rotated. (c) Using a 6th order polynomial (black line) to 
approximate the central frequency (blue line) of the signal in Fig. 6(b).  (d) 
The STFT of the signal in (a) after the FRFT + generalized modulation. 
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Fig. 9  (a) The STFT of the noisy human vocal signal in Fig. 4(a) after con-
ventional modulation + FRFT + generalized modulation. (b) The remaining 
part of the signal in (a) after  using a proper lowpass filter (cutoff frequency = 
12Hz) (NMSE=0.41%). 

 
Fig. 10   The signal bandwidth reflects the lower bound of the cutoff frequen-
cy of the low-pass filter, which is used to reduce the noise while keeping 
complete information for recovering the signal. For each noise-removing 
scheme, the part that remains after the lowpass filtration is depicted by the 
area of the block circled by the dot lines. (a) The original signal. (b) Analytic 
signal conversion + conventional modulation. (c) Analytic signal conversion + 
FRFT + conventional modulation. (d) Analytic signal conversion + FRFT + 
proposed generalized modulation.  
 
 

V. SIMULATION RESULTS 

In our simulations, we add the AWGN with different aver-
age powers to the human vocal signal to see the performances 
of different noise-removing schemes under various noise con-
ditions. The noise reduction performances are measured by the 
NMSE. We show the MSEs of the noisy signal without any 
modifications (Original Error), the noisy signal after  a prop-
er lowpass filter (LPF), the noisy signal modified by the 
noise-removing scheme based on the conventional modulation 
(Analytic + Conventional Modulation + LPF), the noisy 
signal modified by the noise-removing algorithm based on the 
proposed generalized modulation (Analytic + Proposed Gen-
eralized Modulation + LPF), and the noisy signal modified 
by the proposed noise-removing algorithm as illustrated in Fig. 
11 (Analytic + FRFT + Proposed Generalized Modulation 
+ LPF). The result in Fig. 11 shows that the proposed noise-
removing method (Analytic + FRFT + Proposed General-
ized Modulation + LPF) can indeed significantly reduce the 
amount of noise and achieve the best accuracy. 
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Fig. 11  Comparison among the  performances of different noise-removing 
schemes on the human vocal signal.  
 

In Fig. 12, Fig. 14, and Fig. 16, another three simulations 
are performed. The input signals for Fig. 12 and Fig. 14 are 
another two human vocal signals. The input signal for Fig. 16 
is a whale voice signal acquired from [17], which is also a 
time-variant signal. There simulation results are shown in Fig. 
13, Fig. 15, and Fig. 17, respectively. All of the simulation 
results show that the proposed noise–removing algorithm 
based on the generalized modulation is very helpful for reduc-
ing the effects of noise on time-variant signals 

VI. CONCLUSION 

A new noise-removing algorithm is proposed, which is the 
combination of the STFT, analytic signal conversion, the 
FRFT filter, and the generalized modulation operation. With 
the proposed algorithm, the area of the signal spectrogram is 
reshaped and the bandwidth of the signal can be further mini-
mized. With an appropriate lowpass filter, considerable 
amount of noise can be removed and a cleaner signal is ob-
tained. Simulation results show that the proposed method sig-
nificantly reduces the effect of noise on the speech signal. In 
addition to speech signals, we also show that our method also 
performs well on other kind of time-variant signals, such as 
the whale voice signal. In conclusion, the proposed noise-

removing algorithm based on the generalized modulation can 
well separate the signal part and the noise part of a time-
variant signal and a better noise-reducing performance can 
then be achieved. 
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Fig. 12   (a) Lowpass filtered part of Human Vocal Signal 2. (b) Lowpass 
filter output of the signal in (a) after analytic signal generation + conventional 
modulation. (c) The fitting polynomial (black line) of the center frequency 
(blue line) of the signal in (a). (d) Lowpass filter output of the signal in (a) 
after analytic signal generation + generalized modulation. (e) The fitting poly-
nomial (black line) of the center frequency (blue line) of the signal in (a) after 
analytic signal generation + conventional modulation + FRFT. (f) Lowpass 
filter output of the signal in (a) after analytic signal generation + conventional 
modulation + FRFT + generalized modulation. 

 
Fig. 13   Comparison among the performances of different noise-removing 
schemes on Human Vocal Signal 2.  
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Fig. 14   (a) Lowpass filtered part of Human Vocal Signal 3. (b) Lowpass 
filter output of the signal in (a) after analytic signal generation + conventional 
modulation. (c) The fitting polynomial (black line) of the center frequency 
(blue line) of the signal in (a). (d) Lowpass filter output of the signal in (a) 
after analytic signal generation + generalized modulation. (e) The fitting poly-
nomial (black line) of the center frequency (blue line) of the signal in (a) after 
analytic signal generation + conventional modulation + FRFT. (f) Lowpass 
filter output of the signal in (a) after analytic signal generation + conventional 
modulation + FRFT + generalized modulation. 
 
 
 

 
Fig. 15   Comparison among the performances of different noise-removing 
schemes on Human Vocal Signal 3. 
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Fig. 16   (a) Lowpass filtered part of a whale voice signal. (b) Lowpass filter 
output of the signal in (a) after analytic signal generation + conventional 
modulation. (c) The fitting polynomial (black line) of the center frequency 
(blue line) of the signal in (a). (d) Lowpass filter output of the signal in (a) 
after analytic signal generation + generalized modulation. (e) The fitting poly-
nomial (black line) of the center frequency (blue line) of the signal in (a) after 
analytic signal generation + conventional modulation + FRFT. (f) Lowpass 
filter output of the signal in (a) after analytic signal generation + conventional 
modulation + FRFT + generalized modulation.   
 
 
 
 
 
 
 

 
Fig. 17   Comparison among the performances of different noise-removing 
schemes on a whale voice signal.    
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