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Abstract—In this paper, we demonstrate an auditory spectro-
gram based on a dynamic compressive gammachirp filterbank
(GCFB) that enables accurate and robust estimation of vocal tract
length (VTL) for both voiced and whispered speech. Normalized
VTLs of 21 speakers were derived by using the least squared
analysis of their VTL ratios (for all permutations, 420 = 21P20)
which were estimated by minimizing spectral distances in the
auditory spectrograms. The frequency range was selected in
the calculation and the range between 500 and 5000 (Hz) was
most reasonable for both speech mode. The method based on
GCFB was better than that based on the mel-frequency filterbank
(MFFB). The estimated VTLs were compared with the VTL data
measured in MRI to confirm the reliability.

I. INTRODUCTION

Accurate and robust estimation of vocal tract length (VTL)
is important for many speech applications including automatic
speech recognition and speaker classification [1]. A VTL
estimation method was also introduced in a voice morphing
technique, which is widely used in researches for speech
perception and singing voice manipulations [2], to improve
the sound quality.

Speech sounds convey information about nonlinguistic
speaker characteristics in addition to linguistic contents. Hu-
mans can easily identify a speaker as male, female, or child
from the speech sounds, even with a single word or a mono-
syllable [3] and even with whispered speech[4]. This suggests
that the auditory system effectively extracts VTL information
separately from vocal tract shape information. The process
was modeled as the stabilized wavelet- Mellin transform
(SWMT) [5] in which the cochlear filtering is reasonably mod-
eled by using the dynamic compressive gammachirp filterbank
(GCFB) [6].

We previously proposed a VTL estimation method that
uses GCFB as a simplified and effective version of SWMT.
The method was applied to voiced speech to demonstrate the
method based on GCFB outperformed other methods based
on the conventional mel-frequency filterbank (MFFB)[7] [8].

In this paper, we demonstrate that the GCFB-based method
is also successful in estimating the VTL from whispered
speech sounds and outperforms the MFFB-based methods.
The estimated VTLs were also compared with VTL data
measured in magnet resonance image (MRI) [9] to evaluate
the reliability.

II. VTL ESTIMATION METHOD

The relative VTLs were estimated from auditory spectro-
grams as described below. The least squared (LS) analysis is
then applied to evaluate the estimation error.

A. VTL ratio estimation based on spectral distance

The speech samples of speakers A and B with the same
sentence were analyzed by using the gammachirp filterbank
(GCFB), gammatone filterbank (GTFB), or mel-frequency
filterbank (MFFB) (see section II-B3) to derive smoothed
spectrograms PA(f̃ , t) and PB(f̃ , t), where f̃ is either ERB
frequency fERB in GCFB and GTFB or mel-frequency fmel in
MFFB. Since the phoneme locations in the two spectrograms
are different, we deformed the time axis of spectrogram B
to align the phoneme boundaries for B with those for A.
Deformed spectrogram B is denoted as PBn(f̃ , t). To estimate
the VTL ratio between A and B, PBn(f̃ , t) is dilated or
compressed along the linear frequency axis with a scaling
factor, r, to become PBn((r̃f), t). The spectral distance in
the dB scale at time t is defined as the root mean squared
(rms) difference as

DdB(t, r) =

√
DP

f̃H − f̃L

, (1)

where

DP =
∫ f̃H

f̃L

(
10 log10

PA(f̃ , t)
P̄A(t)

− 10 log10

PBn((r̃f), t)
P̄Bn(t)

)2
df̃ ,

where f̃L and f̃H are the warped versions of the lower and
higher limits of the frequency region (fL and fH ) and P̄A(t)
and P̄Bn(t) are the values averaged across the frequencies.

The objective of the VTL estimation is to find the best r
(scaling factor), which minimizes distance Dtotal

dB :

r = argmin(Dtotal
dB (r)), (2)

where total distance Dtotal
dB (r) is defined by using frame-wise

spectral distance DdB(t, r) in Eq. 1:

Dtotal
dB (r) =

√
1
T

∫ T

0

D2
dB(t, r)dt, (3)

where T represents the time for the final frame. Thus, the
estimation is performed for the whole sentence regardless of
voiced or whispered speech.
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Fig. 1. Strategy of VTL estimation from all permutation. VTL ratio between
two speakers, rm,n, is calculated from individual VTLs, ln.

B. Accuracy measure for VTL estimation

It is essential to define a measure to evaluate the accuracy
of the estimated VTL. In this paper, we used the rms error
between the individual VTL ratios estimated by using Eq. 2
and the VTL ratios calculated from the whole set of the
individual VTL ratios as described shortly.

1) VTL estimation from individual VTL ratios: We esti-
mated the relative VTLs between 21 speakers. When the m-th
and n-th speakers’ VTLs are lm and ln as shown in Fig. 1,
the VTL ratio is defined as rm,n = lm/ln. By introducing
logarithmic conversion, it becomes subtraction as

log(rm,n) = log(lm) − log(ln). (4)

It can be converted into a vector notation as

log(rm,n) = [0, 0, ..., 1, ...,−1, ...] × (5)
[log(l1), log(l2), ..., log(lm), ..., log(ln), ...]T .

We set a vector log(rm,n) as rlog, a vector for all speaker
log(lm) as llog , and a coefficient matrix H as a set of
vectors of 1, 0, and -1 together with a uniform vector for
normalization. With this formation, it is possible to estimate
the relative VTL between the individual speakers, but not the
absolute VTL in cm. The relationship is then rewritten as

rlog = Hllog. (6)

The least squared (LS) analysis is applied to estimate the
normalized VTLs, l̂ (= [l̂1, l̂2, ..., ˆl21]).

l̂log = (HT H)−1HT rlog, (7)

l̂ = [l̂1, l̂2, ..., l̂21]T = exp(̂llog),

The VTL ratio, r̂, from the LS analysis is estimated as

r̂ = exp(Hl̂log). (8)

The estimation error is evaluated in terms of the rms difference
or Euclidean norm dest between the VTL ratios from the
spectral distance, r, and the VTL ratios from the LS analysis,
r̂.

dest = ||r − r̂|| ' σ. (9)

Note that dest is almost the same as standard deviation σ
around the identity mapping line (r̂ = r) when the bias is
small. The estimation is accurate when dest is small, since
the the individual VTLs are consistent with the VTLs derived
from the least squared analysis of all permutations.
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Fig. 2. Comparison of filterbanks for VTL estimation from voiced sounds
[1][8]. Bar shows minimum estimation error (Eq. 9 ) for each filterbank
condition. Plus (+) shows error when [fL, fH ]=[500, 5000].

TABLE I
Filterbank in Fig. 2 Description #Channel

GCFBdyn dynamic compressive GCFB 100
GCFBlin linear GCFB 100
GTFB025 gammatone filterbank 24
GTFB050 (linear) 50
GTFB100 100

MFFBSTR24 mel-frequency filterbank 24
MFFBSTR40 based on TANDEM-STRAIGHT 40
MFFBSTR120 spectrogram (linear) 120
MFFBSTFT24 mel-frequency filterbank 24
MFFBSTFT40 based on STFT spectrogram 40
MFFBSTFT120 (linear) 120

2) Selection of best frequency region: We need to select
frequency region [fL, fH ] in Eq. 1 for the reliable estimation
of VTL, because the VTL information in the low and high
frequency regions are smeared by other speech characteristics.
In low frequencies, the spectrum is largely affected by the rate
and the shape of the glottal pulse. In high frequencies, there
are spectral zeros caused by the resonances of the pyriform
fossa [10] which differs individually. The spectral components
in the middle frequency region are not largely affected by these
factors and, thus, effective for VTL estimation. In other words,
the individual VTL ratio, r, is estimated as a function of the
selected frequency region. The objective here is to select the
best frequency region to minimize the estimation error dest (
' σ) in Eq. 9.

3) Auditory spectrogram: The input speech sound is
coverted into two-dimensional cochlear spectrograms by using
GCFB or GTFB. The number of channels was 100 for suf-
ficient filter density, and the center frequencies of the filters
were equally spaced on the ERBN -number axis between 100
and 6000 Hz. An equal-loudness contour (ELC) filter was also
applied to simulate the sensitivity. The power of the filterbank
outputs was summarized every 5 ms with a 25-ms hamming
window to reduce the periodic components that are dependent
on the fundamental frequency (F0).

For comparison, we also calculated auditory-like spectro-
grams from the output of mel-frequency filterbanks (MFFBs).
The linear-frequency spectrogram for the MFFB was derived
by using either STFT or TANDEM-STRAIGHT.
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Fig. 3. Rms error as a function of lower and upper limits of the frequency
region [fL, fH ]. (a) Voiced speech with GCFBdyn, (b) voiced speech with
MFFBSTR40, (c) whispered speech with GCFBdyn, and (d) whispered
speech with MFFBSTR40. ×: Global and local minima with error value.

III. RESULTS

A. VTL estimation from voiced speech

In the previous papers [1][8], we reported a comparison
of auditory spectrograms for VTL estimation from the voiced
speech of 28 speakers. The result of the VTL estimation error
is summarized in Fig. 2, where the type of filterbank is de-
scribed in Table I. As a consequence, a dynamic compressive
gammachirp filterbank (GFFBdyn) gave the smallest error.
We selected GFFBdyn and the best MFFB (MFFBSTR40) for
comparison in VTL estimation from whispered speech.

B. Voiced and whispered speech database

We collected voiced and whispered speech samples to
produce a database to evaluate VTL estimation and to analyze
the relationship between the estimated VTL and the speaker
height. The speakers were14 males and 7 females aged be-
tween 21 and 24 years old and their heights are ranged between
147.0 cm and 186.0 cm. Each speaker pronounced 30 Japanese
sentences both with voiced and whispered speech in a sound
proof room. The speech was recorded monaurally at 48 kHz
and in16 bit with a B&K 4003 microphone and Edirol R4-Pro
recorder. The microphone was located 30 cm from the mouth
of the speakers. In this study, we used speech samples of two
sentences that consisted of 10 and 14 syllables.

C. Robust VTL Estimation from whispered speech

The VTL ratios between two speakers (Fig. 1) were cal-
culated for two speech samples by using Eq. 2. We also
considered the reverse order since the scaling factor, r, is
applied to one side in Eq. 1. The total number of permutations
was 420 (=21P20).

1) Dependency of frequency region: Figure 3 shows the
contour maps of estimation errors for combinations of filter-
banks ( GCFBdyn or MFFBSTR40) and speech mode (voiced
or whispered). The abscissa is a lower limit frequency, fL, and
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Fig. 4. Scatter plot of VTL ratios estimated from (a) voiced and (b) whispered
speech by using GCFBdyn (+) and MFFBSTR40 (o).

the ordinate is a higher limit frequency, fH , for the frequency
region used in Eq. 1.

The minimum estimation errors for voiced speech were
0.017 with GFFBdyn in panel (a) and 0.028 with MFFBSTR40

in panel (b). The minimum estimation errors for whispered
speech were 0.028 with GFFBdyn in panel (c) and 0.037 with
MFFBSTR40 in panel (d). Therefore, GFFBdyn outperformed
MFFBSTR40 independently of speech mode. The best fre-
quency regions [fL, fH ] in the middle of maps were : (a) [600,
4000] Hz, (b) [700, 4000] Hz, (c) [400, 5000], and (d) [600,
6000]. Therefore, the frequency region should be restricted
above about 500 Hz for accurate VTL estimation, although
it is not a well-known fact in conventional studies on VTL
estimation.

2) Relationship between VTL ratios : Figure 4 shows a
scatter plot between VTL ratios estimated from the LS analysis
r̂, and VTL ratios based on the spectral distance r. The
frequency region [500, 5000] was used for analysis here and
in the rest of this paper since this gives small errors for all
conditions. It is clear that the points for GFFBdyn (red pluses)
more compactly concentrate to the identity mapping line for
both voiced and whispered speech. Moreover, the ratios above
about 1.4 estimated with MFFBSTR40 (blue circles) does not
seem reliable since the maximum ratio of the speaker height
was 1.26 (=186.0 cm/147.0 cm) and the height and VTL are
linearly correlated as described in section III-D.

3) Robustness of VTL estimation: Figure 5 shows the cor-
relation between VTLs, [l̂1, l̂2, ..., ˆl21], estimated from voiced
and whispered speech for the 21 speakers. There was a
strong correlation between two VTL estimates. The points
for GCFBdyn concentrated to the least squared line more,
and the coefficient of determination, r2, was greater than for
MFFBSTR40. The results imply that GFFBdyn enabled robust
VTL estimation independent of the speech mode.

The slope of the least squared line for GCFBdyn was
slightly less than the unity. The reason is not immediately clear
due to the restricted number of samples. However, it is also
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Fig. 5. Correlation between relative VTLs estimated from voiced and whis-
pered speech. Each point represents VTL combination for one speaker.

possible to assume that the VTLs were estimated differently
in accordance with the speech mode and speaker size.

D. Relationship between VTL and height

The speech database also has speaker height information.
We analyzed the relationship between the estimated VTLs
and the speaker heights, and compared them with the MRI
data obtained by Fitch and Giedd [9]. They reported that the
regression line estimated from 121 subjects with an age range
from 2 to 25 years is

V TL = 2.7 + 0.068 × Height (cm), (10)

where r = 0.926, adj. r2 = 0.86, and p < 0.0001.
Figure 6 shows the relationship between heights and VTLs

estimated with GCFBdyn (red) and MFFBSTR40 (blue) for
voiced speech (a) and whispered speech (b). The regression
lines are also plotted with the Fitch’s data of Eq. 10 with
its ±10% (green). The coefficients of determination, r2, were
less than about 0.7 in all cases and less than Fitch’s result
(r2 = 0.86). This is mainly due to the small numbers of speech
samples collected from adult speakers in which the range of
height is relatively small. By using GCFBdyn, all VTLs except
for one speaker (F05) in Fig. 6(a) were estimated within the
variability of ±10% which is observed in Fitch’s MRI-VTL
data[9]. It is not, however, the case for MFFBSTR40. The
GCFB enables reasonable VTL estimation for both voiced and
whispered speech.

IV. CONCLUSIONS

In this paper, we demonstrated a VTL estimation method
based on a dynamic compressive gammachirp filterbank
(GCFB) that enables accurate VTL estimation from voiced
and whispered speech sounds. It was shown that the selection
of the frequency range is important and that a range of
about [500, 5000] is reasonable for both speech modes. The
GCFB-based method was better than the MFFB-based method.
The VTLs were reliably estimated within the range of VTLs
reported in the MRI study.
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Fig. 6. Relationship between height and VTL estimated for two sentences from
voiced (a) and whispered speech (b). Each label shows speaker ID centered
on estimated VTL for one sentence.
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